Rapidax™ II
Vascular Access Graft
Vascular Prostheses

Instructions for Use
<table>
<thead>
<tr>
<th>Language</th>
<th>Instructions For Use</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Instructions For Use</td>
<td>4</td>
</tr>
<tr>
<td>Français</td>
<td>Instructions D’Utilisation</td>
<td>7</td>
</tr>
<tr>
<td>Deutsch</td>
<td>Gebrauchsanweisung</td>
<td>11</td>
</tr>
<tr>
<td>Nederlands</td>
<td>Gebruiksaanwijzing</td>
<td>15</td>
</tr>
<tr>
<td>Italiano</td>
<td>Instruzioni Per L’Uso</td>
<td>18</td>
</tr>
<tr>
<td>Español</td>
<td>Instrucciones De Uso</td>
<td>21</td>
</tr>
<tr>
<td>Português</td>
<td>Instruções De Utilização</td>
<td>24</td>
</tr>
<tr>
<td>Svensk</td>
<td>Bruksanvisning</td>
<td>27</td>
</tr>
<tr>
<td>Dansk</td>
<td>Brugsvejledning</td>
<td>30</td>
</tr>
<tr>
<td>Norsk</td>
<td>Brukerveiledning</td>
<td>33</td>
</tr>
<tr>
<td>ΕΛΛΗΝΙΚΑ</td>
<td>Οδηγίες Χρήσης</td>
<td>36</td>
</tr>
<tr>
<td>日本語</td>
<td>取扱説明書</td>
<td>40</td>
</tr>
<tr>
<td>Česky</td>
<td>Návod k použití</td>
<td>43</td>
</tr>
<tr>
<td>Magyar</td>
<td>Használati útmutató</td>
<td>46</td>
</tr>
<tr>
<td>Polski</td>
<td>Instrukcja użycia</td>
<td>49</td>
</tr>
<tr>
<td>Slovensky</td>
<td>Návod na použitie</td>
<td>53</td>
</tr>
<tr>
<td>Русский</td>
<td>Инструкции по применению</td>
<td>56</td>
</tr>
<tr>
<td>Lietuvių Kalba</td>
<td>Naudojimo instrukcijos</td>
<td>60</td>
</tr>
<tr>
<td>Türkçe</td>
<td>Kullanım Talimatları</td>
<td>63</td>
</tr>
<tr>
<td>БЪЛГАРСКИ</td>
<td>Указания за употреба</td>
<td>66</td>
</tr>
<tr>
<td>Srpski</td>
<td>Uputstvo za upotrebu</td>
<td>70</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>Figure 1</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>Figure 2</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>Figure 3</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>Figure 4</td>
<td></td>
<td>79</td>
</tr>
</tbody>
</table>
Description
This range of Vascutek Ltd. vascular access grafts is manufactured from ePTFE (expanded polytetrafluoroethylene), in both straight and pre-curved versions.

The vascular access graft is a double layer bonded graft as shown in Figure 1.

The vascular access graft has two distinct zones, one zone is designed for anastomosis formation and suturing to native vessel, the other is designed for cannulation for the purpose of vascular access for hemodialysis as shown in Figure 2. These are clearly marked on the graft. The pre-curved graft also features a cross to indicate the apex of the curve.

Indications
The Vascutek Ltd. vascular access graft is indicated for use as a subcutaneous arteriovenous conduit for blood access.

The vascular access graft may be punctured for vascular access within 24 hours after implant, providing no contraindications are present i.e. if there are any signs of infection, bleeding, swelling, edema, hematoma, or in the absence of a strong “thrill”.

NOTE: Early access may be associated with occlusion and reintervention.

Contraindications
1. These grafts should only be implanted by vascular surgeons who are experienced with the specific techniques required by these medical devices.
2. These grafts should not be implanted in patients who exhibit sensitivity to ePTFE.

Warnings
1. When using embolectomy or balloon angioplasty catheters within the lumen of the graft, the inflated balloon size must be carefully matched to the inside diameter of the graft. Failure to size the catheter correctly or the over-inflation of the balloon may result in rupture of either the graft or the balloon.
2. The vascular access graft features a degree of longitudinal elasticity. Excessive tension on the prosthesis must be avoided but moderate tension is essential.
3. Cut the graft long enough to ensure that no stress exists at the anastomosis. The patient’s body mass and their likely extremes of their posture must be considered when determining the length of the graft to be implanted, otherwise stress may be placed on the anastomosis. Failure to consider these aspects may cause anastomotic disruption, resulting in excessive bleeding, loss of function or possible amputation of limb and in worst case, death.
4. When the graft is punctured in the non-cannulation areas (Figure 2), it will behave in the same way as standard ePTFE.

5. THROMBECTOMY
Should a post operative occlusion occur, the vascular access graft can be declotted as follows:
• Follow the catheter manufacturers instructions regarding size, selection and balloon inflation, matching the balloon size to the inner diameter of the graft. Over-inflation and excessive pulling may dilate or damage the graft.
• When using a longitudinal incision, place stay sutures at each end of the incision prior to introducing the embolectomy catheter.
• If a transverse incision is used, no stay sutures are necessary and a horizontal mattress suture will aid closure.

Precautions
1. DO NOT PRECLOT. No preclothing required.
2. DO NOT USE BEYOND THE INDICATED EXPIRY DATE.
3. DO NOT RESTERILIZE. FOR SINGLE USE ONLY. Do not reuse, reprocess or resterilize. Reuse, reprocessing or resterilisation may compromise the structural integrity of the device and/or lead to device failure which, in turn, may result in deterioration of health or death of patients. Reuse, reprocessing or resterilisation may also create a risk of contamination of the device and/or cause patient infection or cross infection, including, but not limited to the transmission of infectious disease(s) from one patient to another. Contamination of the device may lead to injury, illness or death of the patient end-user.
4. Clamping may damage any vascular prosthesis. Atraumatic clamps, ideally with soft shod jaws, should be used with a minimum application of force.
5. Store in a cool, dry area not less than 0 °C (32
°F) and not more than 50 °C (122 °F).

6. The potential complications that may occur with any surgical procedure involving a vascular prosthesis include, but are not limited to: aneurysm; anastomotic disruption or tearing of the suture line and/or host vessel; embolic events; infection; bleeding; occlusion; stenosis; thrombosis; kinking/compression; swelling of the implanted limb; formation of hematomas or pseudoaneurysms; steal syndrome and/or skin erosion.

7. Avoid wetting the graft. Exposure to oil, alcohol, aqueous solutions or any of these fluids when pressurized will affect the hydrophobic properties of the material and may result in increased seroma formation.

8. Straight grafts are not designed to be placed in a curved configuration.

9. Pre-curved grafts are not designed to be placed in a straight configuration.

Operative Technique
Implantation Technique & Tips

General points
- No special technique is required to implant the vascular access graft.
- The graft should be implanted in the same manner as a conventional ePTFE graft.
- Select a bullet tipped tunneller suitably sized to ensure that the graft will have a snug fit.
- Use a standard tunnelling technique and instrumentation to position the graft between arterial and venous anastomotic sites.
- Always create tunnels at appropriate depths that will allow easy visualisation and palpation of the vascular access graft.

Straight graft configuration (Figure 3)
1. Make two (2) incisions for proximal and distal entries of the implant site.
2. Expose the sites for both the arterial and venous anastomosis.
3. Using your standard tunnelling technique, create a subcutaneous tunnel between the distal and proximal incisions.
4. Place the vascular access graft into this tunnel; taking care to ensure the graft does not twist.

STRAIGHT GRAFTS ARE NOT DESIGNED TO BE PLACED IN A CURVED CONFIGURATION.

Pre-curved graft configuration (Figure 4)
1. Make two (2) incisions for proximal and distal entries of the implant site.
2. Expose the sites for both the arterial and venous anastomosis.
3. Using your standard tunnelling technique, create a subcutaneous tunnel between the distal and proximal incisions.
4. Place the first side of the vascular access graft into this tunnel; taking care to ensure the graft does not twist.
5. Repeat stages 3-4 for second side of graft.
6. Position the graft to ensure the central cross is located at the apex and the graft has a smooth loop with no kinking.

PRE-CURVED GRAFTS ARE NOT DESIGNED TO BE PLACED IN A STRAIGHT CONFIGURATION. THE PRE-CURVED DESIGN IS PREFERRED TO AVOID KINKING.

Anastomotic preparation
- When the graft has been placed correctly, it is ready for anastomosis to the vessel.
- The end of the graft should be bevelled to accommodate a smooth lie of the graft.
- The anastomosis can be performed using a one or two-suture technique. The other end of the graft should be trimmed and anastomosed in a similar manner.

Note: The graft may be cut and/or sutured along its entire length however; the cannulation portion may offer more resistance to the passage of the needle.

Suturing
- Best results will be achieved by using a tapered, noncutting needle with nonabsorbable monofilament 5.0 or 6.0 suture stitched a suitable distance from the graft edge.
- To minimize suture line bleeding, pull the suture at an angle of 90° to the graft.

Surgical revision
- Should it be necessary to repair the vascular access graft with a surgical interposition bypass graft, please select a graft with matching internal diameter to that currently in place.
- The graft may be sutured either end-to-side or end-to-end, depending upon the requirements of the particular patient.
- If it is necessary to repair the vascular access graft with a surgical interposition bypass graft, use only the cannulation portion for this procedure. The cannulation portion is easily identified by the double printed line as detailed in Figure 2. Failure to follow this procedure may
result in the graft failing to meet its self-sealing design criteria.

To ensure the best performance, Vascutek recommends an end-to-end and not an end-to-side anastomosis for the revision graft.

Cannulation
Insert the blood access needle at a 45° angle with the bevel up until the graft is penetrated.

Care must be taken not to puncture the opposite side of the graft.

For best results:
- Rotate the cannulation sites. Repeated cannulation in the same area may lead to damage of the graft wall and/or formation of hematoma or pseudoaneurysm. Needle puncture sites should be equally spaced along the subcutaneous length of the graft.
- Do not cannulate within one inch (2.5cm) of the proximal or distal anastomosis. When fashioning the anastomosis, maximize the amount of double line area available for cannulation as shown in Figure 2.
- To minimize infection, strict adherence to aseptic technique is required.
- Do not cannulate if there are any signs of infection, bleeding, swelling, edema, hematoma, or in absence of a strong "thrill".

Once the needle has been withdrawn, apply gentle, non-occlusive digital pressure to compress the cannulation site to aid rapid hemostasis.
Prolonged compression or the use of stasis clamps may lead to clot formation, restricting blood flow through the graft.

Sterilization
The Vascutek Ltd. vascular access grafts are sterilized in ethylene oxide, are supplied sterile and must not be resterilized. The seal on both intermediate and inner pouches must be intact. Any damage to the pouches renders the prosthesis non-sterile. In the event of damage to the primary packaging, the product must not be used and should be returned immediately to the supplier.

Packaging
ONLY THE INNERMOST TRAY MAY BE INTRODUCED TO THE STERILE FIELD.

Additional Labels
Additional labels are enclosed on the packaging for inclusion in patient records to enable the tracking of this device.

Additional Information
Do not expose ePTFE products to temperature greater than 500°F (260 °C). PTFE decomposes at elevated temperatures, producing toxic decomposition products.

References

Tyvek® is a DuPont registered trademark.
Français
Instructions d’Utilisation

Description
Gamme de prothèses Vascutek Ltd. pour abord vasculaire en hémodialyse, fabriquée à partir d’ePTFE (polytétrafluoroéthylène expansé), proposées en versions droites et pré-courbées.

La prothèse pour abord vasculaire est une prothèse constituée de double couches, comme illustrée sur la Figure 1.

Elle présente deux zones distinctes: une zone destinée à la formation de l’anastomose et la suture au vaisseau natif, et une seconde zone destinée à la ponction pour les abords vasculaire en hémodialyse, selon les illustrations de la Figure 2. Ces dernières sont clairement indiquées sur la prothèse.

La prothèse en version pré-courbée présente également une croix indiquant le sommet de la courbe. (Figure 2)

Indications
La prothèse Rapidax™ est conçue pour la création de conduits artério-veineux sous-cutanés pour abords vasculaires en hémodialyse.

La prothèse peut être ponctionnée pour un abord vasculaire dans les 24 heures suivant l’implantation, dans la mesure où aucune contre-indication n’est présente. (signes d’infection, de saignements, de gonflements, d’œdème, d’hématome ou en l’absence d’un frémissement ("thrill") important)

REMARQUE : Un abord précoce peut être associé à une occlusion et à une nouvelle intervention1.

Contre-indications
1. Les prothèses ne seront mises en place que par des chirurgiens formés aux techniques vasculaires.
2. Ces prothèses ne doivent pas être implantées chez des patients ayant une allergie connue au ePTFE.

Avertissements
1. En cas d’utilisation de cathéters d’embolectomie ou de cathéters a ballonnet pour angioplastie à l’intérieur de la lumière de la prothèse, la taille du ballon gonflé doit correspondre exactement ou diamètre interne de la prothèse.

Une non-adéquation entre le ballon et le diamètre interne de la prothèse ou le sur-gonflement du ballon pourrait entraîner la rupture soit de la prothèse, soit du ballon.
2. La prothèse pour abord vasculaire présente un certain degré d’élasticité longitudinale. Une tension excessive de la prothèse doit être évitée, néanmoins une tension modérée est indispensable.
3. La prothèse doit être coupée à une longueur suffisante afin d’éviter toute tension au niveau des anastomoses. Le poids et les positions extrêmes du corps du patient doivent être prises en compte pour déterminer la longueur de la prothèse, sans quoi une tension pourrait être exercée sur les anastomoses axillaires lors de l’étirement du corps ou des membres du patient. La non-prise en conséquence de ces éléments pourrait causer une rupture anastomotique qui entraînerait des saignements excessifs, une perte de fonction ou l’amputation éventuelle du membre et, dans les cas extrêmes, la mort.
4. Lorsque la prothèse est ponctionnée dans les zones non destinées à cet effet (Figure 2), ces caractéristiques sont alors identiques à une prothèse ePTFE standard.

5. THROMBECTOMIE
En cas d’occlusion postopératoire, on pourra procéder à l’ablation du thrombus comme suit:
• Suivre les instructions du fabricant concernant le choix, la taille et le gonflement du ballon en faisant correspondre exactement la taille du ballon avec le diamètre interne de la prothèse. Un sur-gonflement du ballon comme un étreinte excessif pourrait dilater ou endommager la prothèse.
• Lorsqu’une incision longitudinale est effectuée, placer des sutures de renfort aux deux extrémités de l’incision avant d’introduire le cathéter d’embolectomie.
• Lorsqu’une incision transversale est réalisée, des sutures de renfort ne seront pas nécessaires et une technique de suture « en matelas » aidera à assurer la fermeture.

Précautions
1. NE PAS PRÉCOAGULER. Aucune précoagulation n’est nécessaire.
2. NE PAS UTILISER APRÈS LA DATE D’EXPIRATION INDIQUÉE.
3. NE PAS RESTÉRILISER. À USAGE UNIQUE. Ne pas réutiliser, retraiter ni restériliser. La réutilisation, le retraitement ou la restérilisation peut compromettre l’intégrité structurelle du dispositif et/ou entraîner son dysfonctionnement qui, à terme, risque de provoquer une détérioration de la santé voire le décès des patients. La réutilisation, le retraitement ou la restérilisation présente également un risque de contamination du dispositif et/ou d’infection ou d’infection croisée des patients, notamment la transmission de maladie(s) infectieuse(s) d’un patient à l’autre. La contamination du dispositif peut provoquer une blessure, une maladie, voire le décès du patient.

4. La clampage peut abîmer les prothèses vasculaires. Des clamps atraumatiques, à mâchoires tendres de préférence, peuvent être appliqués avec un minimum de force.

5. Stocker dans un endroit propre, sec et à une température comprise entre 0°C et 50°C.

7. Éviter de mouiller la prothèse. Ne pas mettre la prothèse au contact d’huile, d’alcool, de solutions aqueuses ou de l’un de ces fluides sous pression au risque de mouiller la prothèse, ce qui affecterait la propriété hydrophobe du matériel et aurait pour résultat une formation de sérum accrue2.

8. Les prothèses droites ne sont pas conçues pour être utilisées dans des configurations courbes.

9. Les prothèses pré-courbées ne sont pas conçues pour être utilisées dans des configurations droites.

Technique opératoire
Techniques et conseils pour l’implantation

Généralités
• Aucune technique spéciale n’est requise pour implanter la prothèse.
• La prothèse devra être implantée selon la même méthode qu’une prothèse ePTFE conventionnelle.
• Sélectionnez un tunnélisateur à pointe bille, de taille adéquate pour assurer une pose parfaite.
• Suivant une technique de tunnélisation standard avec des instruments habituellement utilisés à cet effet, positionnez la prothèse entre les sites anastomotiques artériels et veineux.
• Veillez toujours à créer des tunnels à des profondeurs adéquates, c’est-à-dire à des profondeurs qui permettront de visualiser et de palper aisément la prothèse pour abord vasculaire.

Configuration de prothèse droite (Figure 3)
1. Réaliser deux (2) incisions correspondant aux entrées proximales et distales du site d’implantation.
2. Exposez les sites de l’anastomose artérielle et de l’anastomose veineuse.
3. Au moyen de votre technique de tunnélisation habituelle, créez un tunnel sous-cutané entre l’incision distale et l’incision proximale.
4. Posez la prothèse d’abord vasculaire dans le tunnel en vous assurant que la prothèse ne se torde pas.

LES PROTHESES DROITES NE SONT PAS CONÇUES POUR ETRE UTILISEES DANS DES CONFIGURATIONS COURBES.

Configuration de prothèse pré-courbée (Figure 4)
1. Réaliser deux (2) incisions correspondant aux entrées proximales et distales du site d’implantation.
2. Exposez les sites de l’anastomose artérielle et de l’anastomose veineuse.
3. Au moyen de votre technique de tunnélisation habituelle, créez un tunnel sous-cutané entre l’incision distale et l’incision proximale.
4. Posez le premier côté de la prothèse dans le tunnel en vous assurant que la prothèse ne se torde pas.
5. Recommezcez les étapes 3 et 4 pour poser le deuxième côté de la prothèse.
6. Positionnez la prothèse en vous assurant que la croix centrale est située au niveau du sommet de la courbe et que la prothèse forme une boucle homogène sans torsions.

LES PROTHESES PRE-COURBEEES NE SONT PAS CONÇUES POUR ETRE UTILISEES DANS DES CONFIGURATION DROITES. LE MODELE PRE-COURBE EST PREFERABLE POUR EVITER LES TORSIONS.
Préparation anastomotique
• Une fois que la prothèse a été correctement placée, elle est prête pour l’anastomose au vaisseau.
• L’extrémité de la prothèse devra être biseautée pour pouvoir lui permettre de reposer correctement.
• L’anastomose peut être réalisée à l’aide d’une technique de suture simple ou double. L’autre extrémité de la prothèse devra être découpée et anastomosée de la même façon.
Remarque : La prothèse peut être coupée et/ou suturée sur toute sa longueur; cependant, il faut noter que la zone de ponction présente une résistance supérieure au passage de l’aiguille.

Technique de suture
• De meilleurs résultats sont obtenus utilisant une aiguille effilée non-coupante et un monofilament non-résorbable 5.0 ou 6.0 pour suturer à une distance correcte du bord de la prothèse.
• Afin de minimiser le saignement au niveau de la ligne de suture, suturer en tirant le fils selon un angle de 90°.

Révision chirurgicale
• S’il est nécessaire de réparer la prothèse d’abord vasculaire par interposition chirurgicale d’un greffon de pontage, il faut choisir une prothèse correspondant au diamètre interne de celle qui a été précédemment posée.
• La prothèse pourra être anastomosée par suture terminolatérale ou terminotentérale en fonction des critères personnels du patient.
• S’il est nécessaire de réparer la prothèse par interposition d’un greffon de pontage, il faut veiller à utiliser exclusivement la section de ponction pour réaliser cette opération. La section de ponction est facilement reconnaissable par la double ligne imprimée illustrée sur la Figure 2. La non-prise en considération de cette instruction pourrait nuire aux propriétés d’auto obturation de la prothèse.

Pour obtenir les meilleurs résultats, Vascutek recommande d’effectuer une anastomose terminolatérale au lieu d’une anastomose terminotentérale pour poser la prothèse de révision.

Ponction
L’aiguille de ponction doit être insérée selon un angle de 45° (biseau vers le haut) jusqu’à ce que le greffon ait été perforé.

Prendre soin de ne pas ponctionner la face opposée de la protèse.

Pour de meilleurs résultats:
• Ne pas ponctionner sur le même site. Varier les sites de façon à réduire les risques de lésion de la paroi du greffon et la formation d’hématomes et de pseudoanévrismes. Les sites de ponction devront être régulièrement espacés le long de la ligne du greffon sous-cutanée.
• Ne pas ponctionner à moins de 2,5cm des anastomoses proximales et distales. Au moment de réaliser l’anastomose, maximiser l’espace de double ligne réservé à la ponction selon les illustrations de la Figure 2.
• Pour minimiser les risques d’infection, un respect strict des techniques aseptiques est vivement recommandé.
• Ne pas ponctionner en cas de signes quelconques d’infection, de saignements, de gonflements, d’œdème, d’hématome ou en l’absence d’un frémissement « thrill » important.

Une fois que l’aiguille a été retirée, appliquez une compression digitale non-occlusive modérée sur le site de ponction pour aider à l’hémostase.

Une compression prolongée ou l’utilisation de clamps peuvent entraîner la formation de thrombus en gênant la circulation sanguine à travers le greffon.

Stérilisation
Les prothèses Rapidax™ sont stérilisées à l’oxyde d’éthylène et fournies stériles. Elles ne sont en aucun cas restérilisables. Les couvercles scellés des blisters intermédiaires et internes doivent être intacts. Tout dommage causé à emballages rend la prothèse non-stérile. En cas de dégradation de l’emballage primaire, le produit ne doit pas être utilisé et doit être retourné immédiatement au fournisseur.

Emballage
SEUL LE PLATEAU INTERNE PEUT ETRE INTRODUIT DANS LE CHAMP STERILE.

Etiquettes additionnelles
Des étiquettes supplémentaires sont fournies pour être jointes aux dossiers des patients afin de permettre le suivi de ce dispositif.

Informations complémentaires
Ne pas exposer les produits en ePTFE à des températures supérieures à 260 °C (500 °F). Le
PTFE se décompose à températures élevées, en produisant des substances de décomposition toxiques.

Références
1. Données cliniques.

Tyvek® marque commerciale déposée de Du Pont.
Beschreibung
Die in gerader und vorgebogener Ausführung erhältlichen Gefäßzugangsprothesen von Vascutek Ltd. bestehen aus ePTFE (expandiertes Polytetrafluoroethylen).

Die Gefäßzugangsprothesen setzt sich, wie in Abbildung 1 gezeigt, aus doppelte, aneinander haftenden Schichten zusammen.

Die Gefäßzugangsprothese weist, wie in Abbildung 2 dargestellt, zwei getrennte Bereiche auf: Ein Bereich dient der Anfertigung einer Anastomose mit dem nativen Gefäß, der andere Bereich ist zum Einführen einer Kanüle zum Zweck eines Gefäßzugangs für die Hämodialyse vorgesehen. Beide Bereiche sind auf der Prothese eindeutig gekennzeichnet.

Die vorgebogene Prothese weist außerdem am Scheitel der Krümmung ein Kreuz auf.

Anwendungsgebiete
Die Gefäßzugangsprothesen von Vascutek Ltd. werden als subkutane arteriovenöse Shunts eingesetzt.

Die Gefäßzugangsprothese kann innerhalb von 24 Stunden nach der Implantation punktiert werden, um einen Gefäßzugang zu erhalten, vorausgesetzt, es liegen keine Gegenindikationen, d. h. Anzeichen für eine Infektion, Blutung, Schwellung, Ödem, Hämatom, vor, oder wenn kein starkes Beben („Thrill“) vorhanden ist.

HINWEIS Eine Frühpunktion kann mit Okklusion oder Reintervention zusammenhängen.¹

Gegenanzeigen
1. Diese Prothesen dürfen nur von Gefäßchirurgen implantiert werden, die mit den speziellen Techniken zur Implantation solcher medizinischen Produkte vertraut sind.
2. Diese Prothesen dürfen nicht auf Patienten mit Überempfindlichkeit gegen ePTFE implantiert werden. kann zum Reißen der Prothese oder des Ballons führen.

2. Die Gefäßzugangsprothese weist ein gewisses Maß an Elastizität in der Längsrichtung auf. Übermäßige Spannung auf die Prothese muss vermieden werden, aber mäßige Spannung ist unbedingt erforderlich.

4. Wird die Prothese in den nicht zur Kanülierung gekennzeichneten Bereichen (Abbildung 2) punktiert, so verhält sie sich, wie es standardmäßig von ePTFE zu erwarten ist.

5. THROMBEKTOMIE
Bei Auftreten eines postoperativen Verschlusses, kann das Gerinnsel folgendermaßen aus der Gefäßzugangsprothese entfernt werden:

- Folgen Sie den Anweisungen des Katheterherstellers in Bezug auf Größe, Auswahl und Befüllung des Ballons, wobei die Ballongröße auf den inneren Durchmesser der Prothese abzustimmen ist. Übermäßiges Befüllen und zu starkes Ziehen kann die Prothese dehnen oder beschädigen.
- Wird ein Längsschnitt verwendet, sind vor dem Einführen des Embolektomiekatheters an beiden Enden des Schnitts Haltenähte anzubringen.
- Wird ein Querschnitt verwendet, sind keine Haltenähte erforderlich. Der Wundverschluss kann durch Anbringung einer horizontalen Matratzennaht erleichtert werden.

Warnhinweise

2. Die Gefäßzugangsprothese weist ein gewisses Maß an Elastizität in der Längsrichtung auf. Übermäßige Spannung auf die Prothese muss vermieden werden, aber mäßige Spannung ist unbedingt erforderlich.

4. Wird die Prothese in den nicht zur Kanülierung gekennzeichneten Bereichen (Abbildung 2) punktiert, so verhält sie sich, wie es standardmäßig von ePTFE zu erwarten ist.

5. THROMBEKTOMIE
Bei Auftreten eines postoperativen Verschlusses, kann das Gerinnsel folgendermaßen aus der Gefäßzugangsprothese entfernt werden:

- Folgen Sie den Anweisungen des Katheterherstellers in Bezug auf Größe, Auswahl und Befüllung des Ballons, wobei die Ballongröße auf den inneren Durchmesser der Prothese abzustimmen ist. Übermäßiges Befüllen und zu starkes Ziehen kann die Prothese dehnen oder beschädigen.
- Wird ein Längsschnitt verwendet, sind vor dem Einführen des Embolektomiekatheters an beiden Enden des Schnitts Haltenähte anzubringen.
- Wird ein Querschnitt verwendet, sind keine Haltenähte erforderlich. Der Wundverschluss kann durch Anbringung einer horizontalen Matratzennaht erleichtert werden.

Vorsichtsmaßnahmen
1. NICHT VORGERINNEN. Vorgerinnung ist nicht erforderlich.
2. NICHT NACH ABLAUF DES ANGEGEBENEN VERFALLDATUMS VERWENDEN.
3. NICHT ERNEUT STERILISIEREN. NUR ZUR EINMALIGEN VERWENDUNG. Nicht wiederverwenden oder erneut sterilisieren.

5. An einem sauberen, trockenen Ort nicht unter 0°C (32°F) und nicht über 50°C (122°F) aufbewahren.

Operationstechnik
Implantationstechnik & Tipps

Allgemeine Gesichtspunkte
• Zur Implantation der Gefäßzugangsprothese ist keine spezielle Technik erforderlich.
• Die Prothese sollte auf dieselbe Weise wie herkömmliche ePTFE-Prothesen eingesetzt werden.

• Es sollte ein Tunneliergerät mit Kugelspitze in einer geeigneten Größe gewählt werden, damit die Prothese fest und bequem sitzt.
• Zur Schaffung des Tunnels sollten eine Standardtechnik und Standardinstrumente verwendet werden, um die Prothese zwischen der arteriellen und der venösen Anastomosestelle einzusetzen.
• Der Tunnel sollte ausreichend tief sein, um eine leichte Visualisierung und Palpation der Gefäßzugangsprothese zu gewährleisten.

Konfiguration einer nicht gebogenen Prothese (Abbildung 3)
1. Zwei (2) Einschnitte für den proximalen und distalen Zugang zur Implantationsstelle durchführen.
2. Die Stellen für die arterielle und die venöse Anastomose frei legen.
4. Die Gefäßzugangsprothese in diesen Tunnel einsetzen; die Prothese dabei nicht verdrehen.

GERADE PROTHESEN SIND NICHT DAFÜR DESIGNET, IN EINER GEBOGENEN KONFIGURATION EINGESETZT ZU WERDEN.

Konfiguration einer gebogenen Prothese (Abbildung 4)
1. Zwei (2) Einschnitte für den proximalen und distalen Zugang zur Implantationsstelle durchführen.
2. Die Stellen für die arterielle und die venöse Anastomose freilegen.
4. Die erste Seite der Gefäßzugangsprothese in diesen Tunnel einsetzen; dabei darauf achten, dass sich die Prothese nicht verdreht.
5. Schritt 2 bis 4 auf der anderen Seite der Prothese wiederholen.
6. Die Prothese so verlegen, dass sich das Kreuz in der Mitte am Scheitelpunkt befindet und die Prothese sanft gebogen ist und keine Knicke aufweist.

VORGEBOGENE PROTHESEN SIND NICHT DAFÜR DESIGNET, IN EINER GERADEN KONFIGURATION EINGESETZT ZU WERDEN.
Vorbereitung der Anastomose
• Wenn die Prothese korrekt platziert ist, kann die Anastomose zum Gefäß angelegt werden.
• Das Ende der Prothese sollte abgeschrägt werden, um eine glatte Lage der Prothese zu gewährleisten.
• Die Anastomose kann mit einer Ein- oder Zweinahttechnik angelegt werden. Das andere Ende der Prothese sollte auf ähnliche Weise gekürzt und mit einer Anastomose versehen werden.

Hinweis: Die Prothese kann entlang ihrer gesamten Länge geschnitten und genäht werden; Der Kanülierungsbereich setzt der Nadel aber mehr Widerstand entgegen.

Vernähen
• Die besten Ergebnisse werden mit einer konisch zulaufenden, nicht schneidenden Nadel mit nicht resorbierbarem Monofilament-Nahtmaterial der Stärke 5.0 oder 6.0 erzielt, das in einem geeigneten Abstand zur Prothesenrand vernäht wird.
• Zur Minimierung von Stichkanalblutungen Naht im Winkel von 90° zur Prothese ziehen.

Chirurgische Revision
• Wenn die Gefäßzugangsprothese mit einer Bypass-Prothese zur chirurgischen Interposition repariert werden muss, sollte eine Prothese mit einem Innendurchmesser ausgewählt werden, der zu der bereits vorhandenen Prothese passt.
• Je nach den Erfordernissen des individuellen Patienten kann die Prothese entweder End-zu-Seit oder End-zu-End vernäht werden.
• Wenn die Gefäßzugangsprothese mit einer Bypass-Prothese zur chirurgischen Interposition repariert werden muss, sollte nur der Kanüleineinführbereich für diesen Eingriff verwendet werden. Der Kanüleineinführbereich ist, wie in Abbildung 2 dargestellt, durch eine doppelte Linie gekennzeichnet. Bei Nichtbeachten dieser Vorgehensweise können die selbst abdichtenden Eigenschaften der Prothese verloren gehen.
Für beste Produktleistung empfiehlt Vascutek eine End-zu-End- und keine End-zu-Seit-Anastomose für die Revisionsprothese.

Einführen der Kanüle
Die Punktionsnadel in einem Winkel von 45° einführen (schräge Fläche nach oben), bis die Prothese punktiert ist. Es muss sorgfältig darauf geachtet werden, die gegenüberliegende Seite der Prothese beim Punktieren nicht zu durchstechen.

Für beste Ergebnisse:
• Kanüle nicht in einem Bereich von ca. 2,5 cm proximal und distal der Anastomose einführen. Beim Anpassen der Anastomose die Länge des Bereichs mit der doppelten Linie zum Einführen der Kanüle so groß wie möglich halten, wie in Abbildung 2 gezeigt.
• Zur Minimierung von Infektionen wird die strenge Befolgung aseptischer Techniken empfohlen.
• Kanüle nicht einführen, wenn Anzeichen einer Infektion, Blutung, Schwellung, Ödemen, Hämatomen vorliegen, oder bei Nichtvorhandensein eines starken Babens (Thrill!).

Nach Herausziehen der Nadel zur Förderung der Hämostase mit den Fingern mäßigen, nicht okkludierenden Druck auf die Kanüleineinführungsstelle ausüben.
Längere Kompression oder die Verwendung von Hämostase-Klemmen kann zu Gerinneselsbildung führen und den Blutfluss durch die Prothese einschränken.

Sterilisation

Verpackung
NUR DER INNERE BEUTEL DARF IM STERILEN BEREICH VERWENDET WERDEN.

Zusatzetiketten
Für die Patientenunterlagen liegen zusätzliche Etiketten bei, um diese Prothese nachverfolgen zu können.
Zusätzliche Informationen
Produkte aus ePTFE dürfen nicht Temperaturen höher als 260 °C (500 °F) ausgesetzt werden. PTFE zersetzt sich bei zu hohen Temperaturen, wobei giftige Zersetzungsprodukte entstehen.

Literatur
1. Daten liegen Vascutek vor.

Tyvek® Eingetragenes Warenzeichen von Du Pont
Beschrijving
Het assortiment van Vascutek Ltd. vaattoegangsprotheses is vervaardigd uit ePTFE (geëxpandeerd polytetrafluorethyleen) en verkrijgbaar in een rechte en een voorgevormde uitvoering.

De vaattoegangsprothese bestaat uit dubbele lagen, zoals te zien is op afbeelding 1.

De vaattoegangsprothese heeft twee afzonderlijke delen. Eén deel dient om een anastomose te vormen en de prothese aan het bloedvat te hechten. Het andere deel dient voor de canulatie om een toegang voor hemodialyse te realiseren, zoals te zien is op afbeelding 2. Deze delen zones zijn duidelijk gemarkeerd op de prothese.

Op de voorgevormde prothese staat ook een marker die de top van de kromming aanduidt.

Indicaties
De Vascutek Ltd. vaattoegangsprothese is bedoeld voor gebruik als subcutane, arterioveneze verbinding voor toegang tot de bloedbaan.

De vaattoegangsprothese kan worden aangeprikt binnen 24 uur na de implantatie, op voorwaarde dat er geen contra-indicaties aanwezig zijn, m.a.w. als er geen tekenen zijn van infectie, bloeding, zwelling, oedeem, hematoom of bij afwezigheid van krachtige ‘trill’.

OPMERKING: Toegang in een vroeg stadium kan leiden tot occlusie en reinterventie⁴.

Contra-indicaties
1. Deze protheses dienen uitsluitend te worden geïmplanteeerd door vaatchirurgen die ervaring hebben met de specifieke technieken die vereist zijn voor het gebruik van deze medische producten.
2. Deze protheses dienen niet te worden geïmplanteeerd bij patiënten die gevoelig zijn voor ePTFE.

Waarschuwingen
1. Bij gebruik van balloncatheters voor embolectomie of angioplastie in het lumen van een prothese, dient u de maat van de opgeblazen ballon zorgvuldig af te meten aan de binnendiameter van de prothese. Als een catheter van een verkeerde maat wordt gebruikt of als de balloon te veel wordt opgeblazen, bestaat de kans dat de prothese of de ballon scheurt.
2. De vaattoegangsprothese heeft een zekere elasticiteit in de lengterichting. Overstrekken van de prothese moet voorkomen worden, maar enige mate van spanning is van essentieel belang.
3. Houd de prothese lang genoeg om zeker te zijn dat er geen spanning op de anastomose staat. Wanneer u de lengte van de te implanteren prothese bepaalt, dient u rekening te houden met maximale flexie en extensie van de elleboog, anders kan de anastomose onder spanning komen te staan. Het niet in beschouwing nemen van deze aspecten kan tot naadlekkage leiden, wat overmatig bloeden, uitzetten, mogelijke amputatie van één van de ledematen of in het ergste geval overlijden tot gevolg kan hebben.
4. Wanneer de prothese wordt aangeprikt buiten de canulatiezones (Afbeelding 2), zal de prothese zich op dezelfde manier gedragen als een gewone ePTFE-prothese.
5. TROMBECTOMIE
In geval van een postoperatieve occlusie kan de vaattoegangsprothese als volgt doorgankelijk worden gemaakt.
• Volg de instructies van de catheterfabrikanten met betrekking tot maat, keuze en balloninflatie en zorg ervoor dat de omvang van de ballon overeenstemt met de binnendiameter van de prothese. Door overinflatie of hard trekken kan de prothese uitzetten of schade oplopen.
• Als u een longitudinale incisie maakt, breng dan fixatiehechtingen aan elk uiteinde van de incisie aan, alvorens de embolecomiecatheter in te brengen.
• Bij een transversale incisie zijn geen fixatiehechtingen nodig en kunt u een horizontale matrashechting gebruiken om de wond te helpen sluiten.

Voorzorgsmaatregelen
1. NIET VOORSTOLLEN.
2. HET PRODUCT NIET GEBRUIKEN NA DE OPGEGEVEN EXPIRATIEDATUM.
3. NIET OPNIEUW STERILISEREN. UITSLUITEND VOOR EENMALIG GEBRUIK.

Niet opnieuw gebruiken, recycleren of opnieuw steriliseren. Opnieuw gebruiken,
recycleren of opnieuw steriliseren kan leiden tot ongeschondenheid van het product en/of voor een defect zorgen, wat op zijn beurt kan leiden tot schade aan de gezondheid of de dood van patiënten. Opnieuw gebruiken, recycleren of opnieuw steriliseren kan ook een risico op besmetting van het product en/of infectie van de patiënt of een kruisinfectie veroorzaken, inclusief, maar niet beperkt tot, de overdracht van besmettelijke ziekte(n) van de ene patiënt op de andere. Besmetting van het product kan leiden tot letsel, ziekte of dood van de eindgebruiker.

5. Bewaren in een schone, droge ruimte, bij een temperatuur van minimaal 0°C en maximaal 50°C.

6. Tot de mogelijke complicaties van een chirurgische ingreep waarbij een vaatprothese wordt ingebracht, behoren onder meer, maar blijven niet beperkt tot; aneurysmavorming; naadlekkage of breken van de hechting en/of scheuren van het bloedvat; embolieën; infectie; bloeding; occlusie; stenose; trombose; knikken/compressie; zwelling van het geïmplanteerde ledenmaat; vorming van hematomen of pseudoaneurysma’s; steal syndroom en/of huidslitjage.

7. Vermijd dat de prothese nat wordt. Als de prothese wordt blootgesteld, terwijl het onder spanning staat, aan olie, alcohol of waterhoudende oplossingen, wordt de waterafstotende eigenschap van het materiaal nadelig beïnvloed wat mogelijk tot verhoogde vorming van seroma kan leiden.

8. Rechte protheses zijn niet geschikt om in een gebogen configuratie te plaatsen.

Operatietechniek
Implantatietechniek & tips

Algemeen
- Er is geen speciale techniek vereist voor de implantatie van de vaattoegangsprothese.
- De prothese wordt op dezelfde manier geïmplanteerd als een gewone ePTFE-prothese.
- Kies een tunneler met een kogelvormige punt in de juiste maat, zodat de prothese precies past.
- Positioneer de prothese tussen de arteriële en veneuze anastomoseplaats met behulp van een standaard-tunnelingtechniek.
- Breng tunnels altijd op de juiste diepte aan, zodat de vaattoegangsprothese goed zichtbaar en voelbaar is.

Configuratie rechte prothese (Afbeelding 3)
1. Maak twee (2) incisies voor de proximale en distale toegang tot de implantatieplaats.
2. Leg de plaatsen bloot waar de arteriële en veneuze anastomoses moeten komen.
3. Maak een subcutane tunnel tussen de distale en proximale incisie, met behulp van een standaard-tunnelingtechniek.
4. Plaats de vaattoegangsprothese in deze tunnel en let daarbij op dat de prothese niet draait.

RECHTE PROTHESES ZIJN NIET GESCHikt OM IN EEN GEBOGEN CONFIGURATIE TE PLAATSEN.

Configuratie voorgebogen prothese (Afbeelding 4)
1. Maak twee (2) incisies voor de proximale en distale toegang tot de implantatieplaats.
2. Leg de plaatsen bloot waar de arteriële en veneuze anastomoses moeten komen.
3. Maak een subcutane tunnel tussen de distale en proximale incisie, met behulp van een standaard-tunnelingtechniek.
4. Plaats de eerste zijde van de vaattoegangsprothese in deze tunnel en let daarbij op dat de prothese niet draait.
5. Herhaal de stappen 3-4 voor de tweede zijde van de prothese.
6. Positioneer de prothese zodanig dat de centrale marker aan de top van de kromming zit en de prothese een mooie lus vormt zonder knikken.

VOORGEVORMDE PROTHESES ZIJN NIET GESCHikt OM IN EEN RECHTE CONFIGURATIE TE PLAATSEN. HET VOORGEVORMDE ONTWERP VERDIENT DE VOORKEUR OM KNIKKEN TE VERMIJDEN.

Voorbereiding van de anastomoses
- Wanneer de prothese op de juiste plaats zit, kan de anastomose met het bloedvat worden gemaakt.
- Het uiteinde van de prothese moet schuin worden afgesneden om een soepele ligging van de prothese te verkrijgen.
- De anastomose kan worden uitgevoerd met een één- of twee-hechtingstechniek. Het andere uiteinde van de prothese moet op dezelfde
manier aangepast en geanastomoseerd worden.

Opmerking: De prothese kan over de gehele lengte worden afgeknipt en/of vastgehecht, maar het canulatiegedeelte zal moeilijker doordringbaar zijn voor de naald.

Hechten
• Voor een optimaal resultaat kunt u het best een getaperde, niet-snijdende naald en niet-absorberende monofile draad 5.0 of 6.0 gebruiken en brengt u de hechtingen aan op gepaste afstand van de protheserand.
• Breng de hecht draad onder een hoek van 90° in om zodoende het bloeden zoveel mogelijk te beperken.

Revisieoperatie
• Als het ooit noodzakelijk is de vaattoegang prothese operatief te herstellen met een bypass prothese, kies dan een prothese met dezelfde binnendiameter als de actuele prothese.
• De prothese kan zowel end-to-side of end-to-end worden geanastomoseerd, afhankelijk van de vereisten voor de individuele patiënt.
• Als een operatieve reparatie van de vaattoegang prothese met een bypass prothese noodzakelijk is, mag enkel het canulatiegedeelte voor deze ingreep worden gebruikt. Het canulatiegedeelte is makkelijk herkenbaar aan de dubbele opgedrukte lijn, zie Afbeelding 2. Indien wordt afgeweken van de voorgeschreven procedure, kan de prothese zijn zelfdichtende eigenschap verliezen.

Voor een optimaal resultaat beveelt Vascutek een end-to-end anastomose aan voor de revisie prothese en geen end-to-side anastomose.

Canulatie
Breng de naald voor toegang tot de bloedbaan onder een hoek van 45° aan (afschuining boven) totdat de prothese gepenetreerd is. Wees voorzichtig dat u niet aan de andere kant door de prothese steekt.

Voor optimale resultaten:
• Wissel de canulatieplaatsen af. Herhaalde canulatie op dezelfde plaats kan leiden tot beschadiging van de prothesewand en/of vorming van hematomen of pseudoaneurysma’s. Verdeel de prikplaatsen gelijkmatig over de subcutane lengte van de prothese.
• Canuleer niet op minder dan 2,5 cm afstand van de proximale of distale anastomose. Zorg er bij het maken van de anastomose voor dat er een maximale lengte met dubbele lijn overblijft voor de canulatie, zoals te zien is op Afbeelding 2.
• Om het infectierisico tot een minimum te beperken, moet er een strikte aseptische techniek worden toegepast.
• Canuleer niet als u tekenen vaststelt van infectie, bloeding, zwelling, oedeem, hematoom of als er geen krachtige ‘trill’ is.

Oefen na het terugtrekken van de naald een zachte, niet-occlusieve druk op de canulatie plaats uit met de vinger, om een snelle hemostase te bevorderen.

Langdurige compressie of het gebruik van hemostaseklemmen kunnen stolling veroorzaken en de bloeddoorstrom door de prothese belemmeren.

Sterilisatie
De vaattoegangsprotheses van Vascutek Ltd. zijn gesteriliseerd met ethyleenoxide. Ze worden steriel geleverd en mogen niet opnieuw worden gesteriliseerd. De verzegeling van zowel de buitenste als de binnenste verpakking moet intact zijn. Als de verpakkingen beschadigd zijn, zijn de protheses niet meer steriel.

ALS DE BINNENSTE VERPAKKING MAG IN HET STERIELE VELD WORDEN BINNENGEBRACHT

Verpakking
Aanvullende Etiketten
Om tracering van de prothese mogelijk te maken, zijn extra etiketten bij het product gevoegd die in het patiëntendossier kunnen worden geplakt.

Extra informatie
Stel ePTFE-producten niet bloot aan temperaturen hoger dan 260 °C (500 °F). PTFE breekt af bij verhoogde temperaturen en produceert giftige ontbindingsproducten.

Referenties
1. Gegevens geregistreerd.

Tyvek® Du Pont gedeponeerd handelsmerk.
Descrizione

Questa gamma di protesi per accesso vascolare della Vascutek Ltd. è prodotta in ePTFE (politetrafluoroetilene espanso), nelle versioni sia rette, che precurvate.

La struttura della protesi per accesso vascolare è composta da doppia strati, come mostrato nella Figura 1.

La protesi per accesso vascolare comprende due zone distintine, una zona disegnate per l'anastomosi e la sutura al vaso nativo, l'altra per l'incannulazione per la costituzione di un accesso vascolare per l'emodialisi, come mostrato nella Figura 2. Le due zone sono chiaramente indicate sulla protesi.

La protesi precurvata presenta anche una croce che indica l’apice della curva.

Indicazioni

La protesi per accesso vascolare della Vascutek Ltd. è indicata come condotto arterovenoso sottocutaneo per l’accesso emodialitico.

La protesi può essere punta per l’accesso vascolare entro 24 ore dall’impianto, a condizione che non vi siano controindicazioni, ossia non vi siano segni di infezione, sanguinamento, tumefazione, edema, ematoma oppure in assenza di un forte “fremito”.

NOTA: l’accesso precoce può essere associato ad occlusione e reintervento.

Controindicazioni

1. Queste protesi devono essere impiantate esclusivamente da chirurghi vascolari che conoscano a fondo le tecniche specifiche richieste da questi dispositivi medicali.
2. Queste protesi non devono essere impiegate in pazienti allergici all’ePTFE.

Avvertenze

1. Quando si utilizzano cateteri per embolectomia o cateteri a palloncino per angioplastica all’interno del lume della protesi, le dimensioni del palloncino gonfiato dovranno essere accuratamente adeguate al diametro interno della protesi stessa. L’errata misura del catetere o il gonfiaggio eccessivo del palloncino potrebbero causare la rottura sia della protesi che del palloncino stesso.
2. La protesi per accesso vascolare presenta un certo grado di elasticità longitudinale. Evitare di sottoporre la protesi a tensione eccessiva; una tensione moderata è comunque essenziale.
3. Tagliare la protesi in modo che la lunghezza sia sufficiente ad assicurare l’assenza di sollecitazioni sull’anastomosi. Ai fini della determinazione della lunghezza della protesi da impiantare, si dovranno prendere in considerazione la massa corporea ed i probabili movimenti estremi del paziente, altrimenti potrebbe verificarsi stress sull’anastomosi. La mancata valutazione di questi fattori potrebbe provocare la rottura sull’anastomosi con conseguente eccessivo sanguinamento, perdita delle funzioni o possibile amputazione dell’arto interessato e, nel peggiore dei casi, decesso del paziente.
4. Quando la protesi viene punta nell’area non destinata all’incannulazione (Figura 2), si comporta come l’ePTFE standard.

5. TROMBECTOMIA

Nel caso dovesse verificarsi un’occlusione post-operatoria, la protesi per accesso vascolare può essere liberata adottando la procedura indicata di seguito.
• Seguire le istruzioni del produttore del catetere relative alle dimensioni, alla selezione ed al gonfiaggio del palloncino, adattando le dimensioni del palloncino al diametro interno della protesi. Un gonfiaggio o una trazione eccessivi possono dilatare o danneggiare la protesi.
• Quando si esegue un’incisione longitudinale, praticare suture permanenti su entrambe le estremità dell’incisione prima di introdurre il catetere per embolectomia.
• Se viene eseguita un’incisione trasversale, non sono necessarie suture permanenti, mentre la chiusura è favorita da una sutura da orizzontale a materasso.

Precauzioni

1. **NON PRECOAGULARE.** Non è richiesto preclotting.
2. **NON UTILIZZARE DOPO LA DATA DI SCADENZA INDICATA.**
3. **NON RISTERILIZZARE. ESCLUSIVAMENTE MONOUSO.** Non riutilizzare, rilavorare o risterilizzare. Il riutilizzo, la rilavorazione o la risterilizzazione possono compromettere l’integrità strutturale del dispositivo e/o portare
a un funzionamento non corretto dello stesso, con la possibilità di provocare, di conseguenza, malattia o decesso del paziente. Il riutilizzo, la rilavorazione o la risterilizzazione possono inoltre creare un rischio di contaminazione del dispositivo e/o causare un’infezione o un’infezione crociata al paziente, compresa, ma non limitatamente a, la trasmissione di malattie infettive da un paziente a un altro. La contaminazione del dispositivo può portare a lesioni, malattia o morte del paziente.

4. Il clampaggio danneggia qualunque protesi vascolari. Utilizzare clamp atraumatiche, possibilmente con branche morbide rivestite, applicando una forza minima.

5. Conservare in luogo pulito e asciutto ad una temperatura non inferiore a 0°C e non superiore ai 50°C .

6. Le potenziali complicanze che possono verificarsi in qualunque intervento chirurgico con protesi vascolari includono, ma non sono limitate a: aneurisma, rottura dell’anastomosi o lacerazione della linea di suture e/o del vaso ospitante, eventi embolici; infezione; emorragia; occlusione; stenosi; trombosi; kinking/compressione; tumefazione dell’arto trattato; formazione di cateteri o pseudoaneurismi; sindrome da furti e/o erosione cutanea.

7. Non bagnare la protesi. L’esposizione ad olio, alcool o soluzioni acquose o ciascuno di questi fluidi quando vengono pressurizzati, influisce sulle proprietà idrofobiche dei materiali e potrebbe causare una maggior formazione di seroma.

8. Le protesi rette non sono concepite per essere posizionate in una configurazione curva.

9. Le protesi precurvate non sono concepite per essere posizionate in una configurazione retta.

Tecnica operatoria
Tecnica e suggerimenti per l’impianto

Aspetti generali
- Per implantare una protesi per accesso vascolare non occorre una tecnica speciale.
- La protesi deve essere impiantata come una protesi in ePTFE convenzionale.
- Scegliere un tunnellizzatore con punta a proiettile di misura adeguata per assicurarsi che la protesi si adatti alla perfezione.
- Utilizzare una tecnica di tunnellizzazione e strumenti standard per posizionare la protesi tra i siti di anastomosi arteriosa e venosa.
- Creare sempre tunnel a profondità appropriate che consentano una facile visualizzazione e palpazione della protesi per accesso vascolare.

Configurazione retta della protesi (Figura 3)
1. Praticare due (2) incisioni per gli ingressi prossimale e distale del sito dell’impianto.
2. Esoporre i siti per l’anastomosi arteriosa e venosa.
3. Utilizzando la tecnica di tunnellizzazione standard, creare un tunnel sottocutaneo tra le incisioni distale e prossimale.
4. Posizionare la protesi per accesso vascolare nel tunnel, evitando possibili torsioni.

LE PROTESI RETTE NON SONO CONCEPITE PER ESSERE POSIZIONATE IN UNA CONFIGURAZIONE CURVA.

Configurazione precurvata della protesi (Figura 4)
1. Praticare due (2) incisioni per gli ingressi prossimale e distale del sito dell’impianto.
2. Esoporre i siti per le anastomosi arteriosa e venosa.
3. Utilizzando la tecnica di tunnellizzazione standard, creare un tunnel sottocutaneo tra le incisioni distale e prossimale.
4. Posizionare il primo lato della protesi per accesso vascolare nel tunnel, evitando possibili torsioni.
5. Ripetere i passaggi 3 e 4 per il secondo lato della protesi.
6. Posizionare la protesi in modo che la croce centrale si trovi all’apice e la protesi compia una curva uniforme, senza kinking.

LE PROTESI PRECURVATE NON SONO CONCEPITE PER ESSERE POSIZIONATE IN UNA CONFIGURAZIONE RETTA. PER EVITARE KINKING È PREFERIBILE USARE LA VERSIONE PRECURVATA.

Preparazione dell’anastomosi
- Dopo che la protesi è stata posizionata correttamente, è pronta per l’anastomosi con il vaso.
- L’estremità della protesi deve essere smussata per garantire un facile posizionamento.
- L’anastomosi può essere eseguita adottando una tecnica con una o due suture. L’altra estremità della protesi deve essere tagliata e anastomizzata in modo analogo.

Nota: la protesi può essere tagliata e/o suturata per tutta la lunghezza; la porzione destinata all’incannulazione può opporre una maggiore resistenza al passaggio dell’ago.
Sutura
• I risultati migliori si ottengono utilizzando un ago rastremato a punta tonda con sutura da 5,0 o 6,0 monofilamento non assorbibile praticata a una distanza confacente dal bordo della protesi.
• Tirare la sutura a 90° rispetto alla protesi onde minimizzare il sanguinamento dalla linea di sutura.

Revisione chirurgica
• Nel caso dovesse essere necessario riparare la protesi per accesso vascolare con interposizione chirurgica di un bypass protesico, selezionare un innesto con un diametro interno conforme a quello in sede.
• L’innesto può essere suturato con approccio termino-laterale o termino-terminale in base alle necessità del paziente specifico.
• Se è necessario riparare la protesi per accesso vascolare con interposizione chirurgica di un bypass protesico, utilizzare solo la porzione destinata all’incannulazione per questa procedura. La porzione destinata all’incannulazione è contrassegnata dalla doppia linea stampata, come indicato nella Figura 2. La mancata osservanza di questa procedura può determinare un mancato soddisfacimento dei criteri di auto-sigillazione della protesi.

Per garantire le prestazioni migliori, Vascutek raccomanda un’anastomosi termino-terminale e non termino-laterale per l’innesto di revisione.

Incannulazione
Inserire l’ago di accesso vascolare con un’angolazione di 45° e con lo smusso rivolto verso l’alto finché la protesi sia penetrata. Aver cura di non perforare la superficie opposta della protesi.

Per ottenere i migliori risultati:
• Ruotare i siti di inserimento della cannula. Un’incannulazione ripetuta nella stessa area può provocare danni alla parete della protesi e/o formazione di ematomi o pseudoaneurismi.
• I siti di puntura devono essere ugualmente distanziati sull’intera lunghezza sottocutanea della protesi.
• Non inserire la cannula entro 2,5 cm dall’anastomosi prossimale o distale. Durante l’esecuzione dell’anastomosi, massimizzare la quantità di area con linea doppia disponibile per l’incannulazione, come mostrato nella Figura 2.
• Per ridurre al minimo le infezioni, rispettare rigorosamente le norme di asetticità.
• Non inserire la cannula se vi sono segni di infezione, sanguinamento, tumefazione, edema, ematoma oppure in assenza di un forte “fremito”.

Dopo aver ritirato l’ago, esercitare una delicata pressione digitale non occlusiva per comprimere il sito di incannulazione e favorire un’emostasi rapida.

Una compressione prolungata o l’uso di clamp per stasi possono causare la formazione di coaguli, limitando il flusso ematico attraverso la protesi.

Sterilizzazione
Le protesi per accesso vascolare Vascutek Ltd. sono sterilizzate con ossido di etilene, vengono fornite sterili e non devono essere risterilizzate. La sigillatura sui contenitori interno e intermedio deve essere intatta. Qualsiasi danno ai contenitori renderà la protesi non sterile. In caso di danneggiamento della confezione primaria il prodotto non dovrà essere usato e dovrà essere restituito immediatamente al fornitore.

Confezione
SOLO IL VASSOIO PIÙ INTERNO PUÒ ESSERE INTRODOTTO IN CAMPO STERILE.

Etichette aggiuntive
La confezione include etichette aggiuntive che devono essere inserite nella cartella del paziente per consentire d’identificazione del dispositivo.

Ulteriori informazioni
Non esporre i prodotti in ePTFE a temperature superiori a 260 °C (500 °F). Il PTFE si decompone a temperature elevate, producendo prodotti di decomposizione tossici.

Bibliografia
1. Dati in archivio.

Tyvek® è un marchio registrato Du Pont.
Descripción
Esta gama de injertos de acceso vascular de Vascutek Ltd. se fabrican con ePTFE (politetrafluoruro de etileno expandido) en versiones tanto rectas como precurvadas.

El injerto de acceso vascular es un injerto de doble capa, como se muestra en la Figura 1.

El injerto de acceso vascular tiene dos zonas diferenciadas. Una zona está diseñada para la formación de las anastomosis y la sutura al vaso original; la otra está diseñada para la canulación con el fin de conseguir un acceso vascular para hemodiálisis, como se muestra en la Figura 2. Estas zonas están marcadas claramente en el injerto.

El injerto precurvado tiene también una cruz para indicar el vértice de la curva.

Indicaciones
El injerto de acceso vascular de Vascutek Ltd. está indicado para su uso como conducto arteriovenoso subcutáneo para el acceso sanguíneo.

El injerto de acceso vascular puede pincharse para obtener acceso vascular en 24 horas después del implante, siempre que no haya contraindicaciones, esto es, si no hay signos de infección, sangrado, hinchazón, edema, hematoma o en ausencia de un flujo fuerte.

NOTA: un temprano acceso puede estar asociado con oclusión o reintervención1.

Contraindicaciones
1. Estos injertos deben ser implantados sólo por cirujanos vasculares que tengan experiencia con las técnicas específicas necesarias para estos dispositivos médicos.
2. Estas prótesis no deben ser implantadas en pacientes que presenten sensibilidad al ePTFE.

Precauciones
1. NO PRECOAGULE. No es necesaria la precoagulación.
2. NO UTILIZAR DESPUÉS DE LA FECHA DE CADUCIDAD INDICADA.
3. NO REESTERILIZAR. PARA UN SOLO USO. No reutilizar, volver a procesar ni reesterilizar. La reutilización, reprocesamiento o reesterilización puede comprometer la integridad estructural del dispositivo y/o provocar un fallo del mismo que, a su vez, podría traducirse en un deterioro de la
salud o la muerte de pacientes. La reutilización, reprocesamiento o reesterilización también puede crear un riesgo de contaminación del dispositivo y/o provocar la infección del paciente o contaminación cruzada, incluyendo, pero sin limitarse a, la transmisión de enfermedades infecciosas de un paciente a otro. La contaminación del dispositivo puede ser causa de lesiones, enfermedad o la muerte del paciente (usuario final).

4. Las pinzas pueden dañar cualquier prótesis vascular. Deben usarse pinzas atraumáticas, preferiblemente con las puntas recubiertas de material blando, con una aplicación mínima de fuerza.
5. Almacenar en un sitio limpio y seco, a una temperatura no menor de 0°C (32°F) y no mayor de 50°C (122°F).
6. Las posibles complicaciones que pueden producirse con cualquier procedimiento quirúrgico que implique una prótesis vascular son, entre otras: aneurisma; interrupción de la anastomosis o desgarro de la línea de sutura y/o el vaso receptor; acontecimientos embólicos; infección; sangrado; oclusión; estenosis; trombosis; retorcimiento/compresión; hinchazón del miembro implantado; formación de hematomas o pseudoaneurismas; síndrome de robo y/o erosión cutánea.

7. No moje el injerto. El contacto con aceite, alcohol o soluciones acuosas, cuando esté sometido a presión, afectará las propiedades hidrofóbicas del material y podría provocar una mayor formación de seromas.

8. Los injertos rectos no están diseñados para colocarse en una configuración curva.

9. Los injertos precurvados no están diseñados para colocarse en una configuración recta.

Técnica operatoria
Técnica de implantación y consejos

Puntos generales
- No se necesita una técnica especial para implantar el injerto de acceso vascular.
- El injerto debe implantarse de la misma forma que un injerto convencional de ePTFE.
- Seleccione un tunelizador con punta oblonga, de tamaño adecuado para garantizar que el injerto tenga un buen ajuste.
- Use una técnica y una instrumentación de tunelización estándares para colocar el injerto entre los lugares anastomóticos arterial y venoso.
- Cree siempre los túneles a profundidades adecuadas que permitan una fácil visualización y palpación del injerto de acceso vascular.

Configuración de injerto recto (Figura 3)
1. Haga dos (2) incisiones para entradas proximal y distal del lugar del implante.
2. Exponga los lugares para las anastomosis tanto arterial como venosa.
3. Usando su técnica de tunelización estándar, cree un túnel subcutáneo entre las incisiones distal y proximal.
4. Coloque el injerto de acceso vascular dentro de este túnel; tenga cuidado de que el injerto no se retuerza.

LOS INJERTOS RECTOS NO ESTÁN DISEÑADOS PARA COLOCARSE EN UNA CONFIGURACIÓN CURVA.

Configuración de injerto precurvado (Figura 4)
1. Haga dos (2) incisiones para entradas proximales y distales del lugar del implante.
2. Exponga los lugares para las anastomosis tanto arterial como venosa.
3. Usando su técnica de tunelización estándar, cree un túnel subcutáneo entre las incisiones distal y proximal.
4. Coloque el primer lado del injerto de acceso vascular dentro de este túnel; tenga cuidado de que el injerto no se retuerza.
5. Repita las etapas 3-4 para el segundo lado del injerto.
6. Coloque el injerto asegurando que la cruz central se encuentra en el vértice y el injerto tiene una curva lisa sin acodamiento.

LOS INJERTOS PRECURVADOS NO ESTÁN DISEÑADOS PARA COLOCARSE EN UNA CONFIGURACIÓN RECTA. SE PREFIERE EL DISEÑO PRECURVADO PARA EVITAR EL ACODAMIENTO.

Preparación anastomótica
- Cuando se ha colocado el injerto correctamente, está listo para la anastomosis al vaso.
- El extremo del injerto debe ser biselado para permitir una colocación suave del injerto.
- La anastomosis puede realizarse usando una técnica de una o dos suturas. El otro extremo del injerto debe recortarse y anastomosarse de forma similar.

Nota: El injerto puede cortarse y/o suturarse a lo largo de toda su longitud; sin embargo, la porción de canulación puede ofrecer más resistencia al paso de la aguja.
Sutura
- Los mejores resultados se alcanzarán usando una aguja cónica, no cortante, con sutura 5.0 o 6.0 monofilamento no absorbible cosida a una distancia adecuada del borde del injerto.
- Para minimizar el sangrado a lo largo de la línea de sutura, tire de la sutura en un ángulo de 90° con respecto al injerto.

Revisión quirúrgica
- Si fuese necesario reparar el injerto de acceso vascular con un injerto de derivación de interposición quirúrgica, seleccione un injerto con un diámetro interno que se ajuste al del que está actualmente colocado.
- El injerto puede suturarse ya sea de forma termino-terminal o termino-lateral, dependiendo de los requisitos de cada paciente.
- Si es necesario reparar el injerto de acceso vascular con un injerto de derivación de interposición quirúrgica, use sólo la porción de canulación para este procedimiento. La porción de canulación se identifica fácilmente por la doble línea impresa como se indica en la Figura 2. Si no se sigue este procedimiento, puede producirse incapacidad del injerto para satisfacer sus criterios de diseño de autoseallado.

Para asegurar el mejor rendimiento, Vascutek recomienda una anastomosis termino-terminal y no una anastomosis de termino-lateral para el injerto de revisión.

Canulación
La aguja para la diálisis sanguínea debe insertarse a un ángulo de 45° con el bisel hacia arriba hasta que se haya penetrado el injerto. Debe tenerse cuidado de no perforar el lado contrario del injerto al canular la prótesis con la aguja de diálisis.

Para obtener los mejores resultados:
- **Para reducir al mínimo la posibilidad de infección,** se necesita una adherencia estricta a una estricta técnica aséptica.
- **No canule si hay signos de infección,** sangrado, hinchazón, edema, hematoma o en ausencia de un flujo fuerte.

Una vez que se ha retirado la aguja, aplique presión suave, no oclusiva para comprimir el lugar de canulación para ayudar a una hemostasia rápida.

La compresión prolongada o el uso de pinzas de hemostasia puede conducir a la formación de coágulos, limitando el flujo sanguíneo a través del injerto.

Esterilización
Los injertos de acceso vascular de Vascutek Ltd. se esterilizan en óxido de etileno, se suministran estériles y no deben reesterilizarse. El sello tanto intermedio como el del envasado interior deben estar intactos. Cualquier daño a estos envases pueden conducir a la no esterilidad de la prótesis. En caso de que el envase exterior sufra daño, el producto no deberá ser usado, y deberá ser devuelto de inmediato al proveedor.

Envasado
SÓLO LA BANDEJA MÁS INTERIOR DEL ENVASADO PUEDE INTRODUCIRSE EN EL CAMPO ESTÉRIL.

Etiquetas adicionales
Se incluyen etiquetas adicionales en el envasado para utilizarlas en los registros de pacientes para permitir el seguimiento de este dispositivo.

Información adicional
No exponga los productos de ePTFE a temperaturas superiores a 260 °C (500 °F). El PTFE se descompone a temperaturas elevadas y produce productos tóxicos en la descomposición.

Referencias
1. Información en el archivo.

Tyvek® Marca registrada de Du Pont.
Descrição
Esta gama de próteses para acesso vascular da Vascutek Ltd. é fabricada de ePTFE (politetrafluoroetileno expandido) nas versões rectilínea e pré-curva.
A prótese para acesso vascular é uma prótese constituída por duplo camadas ligadas, conforme ilustrado na Figura 1.
A prótese para acesso vascular tem duas zonas distintas, uma zona concebida para a formação da anastomose e para sutura ao vaso primitivo, a outra concebida para canulação para efectuar o acesso vascular para hemodiálise, conforme ilustrado na Figura 2. Estas zonas estão marcadas claramente na prótese.
A prótese pré-curva também apresenta uma cruz para indicar o ápice da curva.

Indicações
A prótese para acesso vascular da Vascutek Ltd. está indicada para utilização como canal arteriovenoso para acesso ao sangue.
A prótese para acesso vascular pode ser puncionada para acesso vascular num período de 24 horas após o implante desde que não existam contra-indicações, isto é, na ausência de sinais de infecção, hemorragia, tumefacção, edema, hematoma ou de um frémito forte.

Nota: O acesso precoce pode estar associado a oclusão e a uma nova intervenção.

Contra-indicações
1. Estas próteses só podem ser implantadas por cirurgiões vasculares com experiência nas técnicas específicas exigidas por estes dispositivos médicos.
2. Estas próteses não devem ser implantadas nos pacientes que demonstrem sensibilidade ao ePTFE.

Avisos
1. Ao utilizar cateteres de embolectomia ou de angioplastia com balão no lúmen de uma prótese, o tamanho do balão insuflado deve coincidir com o diâmetro interno da prótese. Se o cateter não for correctamente dimensionado ou for excessivamente insuflado, o resultado pode ser a ruptura da prótese ou do balão.
2. A prótese para acesso vascular apresenta um certo grau de elasticidade longitudinal. Deve evitar-se uma tensão excessiva na prótese, no entanto, é essencial exercer uma tensão moderada.
3. Corte a prótese com o comprimento suficiente para que não exista tensão na anastomose. Deve ter-se em consideração a massa corporal e as posições extremas possíveis do doente na determinação da escolha da prótese a implantar, caso contrário poderá ser exercida tensão na anastomose. A não avaliação destes aspectos pode causar ruptura da anastomose provocando uma excessiva hemorragia, perda da função ou amputação do membro e, na pior das hipóteses, morte.
4. Quando a prótese é puncionada nas zonas que não estão destinadas à canulação (Figura 2), comporta-se de maneira idêntica à de ePTFE padrão.
5. Trombectomia
Se ocorrer uma oclusão pós-operatória, pode efectuar-se a descoagulação da prótese para acesso vascular como se indica a seguir:
• Siga as instruções do fabricante do cateter no que respeita ao tamanho, selecção e insuflação do balão, assegurando-se de que o tamanho do balão corresponde ao diâmetro interno da prótese. A insuflação e a tracção excessivas podem dilatar ou danificar a prótese.
• Quando se utiliza uma incisão longitudinal, deve efectuar-se uma sutura de fixação em cada extremidade da incisão antes de introduzir o cateter de embolectomia.
• No caso de se utilizar uma incisão transversal, não é necessária a sutura de fixação e efectua-se uma sutura descontínua para facilitar o encerramento.

Precauções
1. NÃO DEVE PRÉ-COAGULAR. Não é necessário pré-coagular.
2. NÃO UTILIZE PARA ALÉM DA DATA DE VALIDADE INDICADA.
3. NÃO RE-ESTERILIZAR. UTILIZAÇÃO ÚNICA. Não reutilize, reprocesse nem re-esterilize. A reutilização, reprocessamento ou re-esterilização pode comprometer a integridade estrutural do dispositivo e/ou provocar falha no dispositivo o que, por sua vez, pode resultar na deterioração da saúde ou morte dos doentes. A reutilização, reprocessamento ou re-esterilização pode
ainda originar o risco de contaminação do dispositivo e/ou causar infecção ou infecção cruzada no doente, incluindo, entre outras, a transmissão de doença(s) infecciosa(s) entre doentes. A contaminação do dispositivo pode resultar em lesões, doença ou morte do utilizador final, o doente.

4. A utilização de pinças pode danificar qualquer prótese vascular. As pinças atraumáticas, de preferência com garras com revestimento macio, devem ser aplicadas exercendo uma força mínima.

5. Guarde em local limpo e seco, com uma temperatura não inferior a 0°C (32°F) e não superior a 50°C (122°F).

6. As complicações potenciais que podem ocorrer com qualquer procedimento cirúrgico que envolva uma prótese vascular incluem, mas não se limitam a: aneurisma, desunião da anastomose ou ruptura da linha de sutura e/ou do vaso hospedeiro, episódios embólicos, infecção, hemorragia, oclusão, estenose, trombose, formação de dobras/compressão, tumefacção do membro implantado, formação de hematomas ou de pseudoaneurismas, síndroma de roubo e/ou erosão da pele.

7. Evite molhar a prótese. A exposição ao óleo, álcool, soluções aquosas ou quaisquer outros líquidos pressurizados pode afectar as propriedades hidrofóbicas do material podem resultar num aumento de formação de seromas.

8. As próteses rectilíneas não foram concebidas para serem colocadas numa configuração curva.

Técnica operatória
Técnica de implantação e sugestões

Aspectos gerais
• Não é necessária uma técnica especial para implantar a prótese para acesso vascular.
• A prótese deve ser implantada de maneira idêntica à de uma prótese de ePTFE convencional.
• Selecione um tunelizador de ponta esférica com as dimensões adequadas para se assegurar de que a prótese fica bem ajustada.
• Utilize uma técnica de tunelização padrão e a respectiva instrumentação para posicionar a prótese entre os locais anastomóticos arterial e venoso.
• Crie túneis que tenham sempre uma profundidade apropriada para facilitar a visualização e a palpação da prótese para acesso vascular.

Configuração da prótese rectilínea
(Figura 3)
1. Faça duas (2) incisões nas entradas proximal e distal do local de implante.
2. Exponha os locais das anastomoses arterial e venosa.
3. Utilizando a sua técnica de tunelização padrão, crie um túnel subcutâneo entre as incisões distal e proximal.
4. Coloque a prótese para acesso vascular neste túnel, tendo o cuidado de assegurar que a mesma não fica torcida.

AS PRÓTESES RECTILÍNEAS NÃO FORAM CONCEBIDAS PARA SEREM COLOCADAS NUMA CONFIGURAÇÃO CURVA.

Configuração da prótese pré-curva
(Figura 4)
1. Faça duas (2) incisões nas entradas proximal e distal do local de implante.
2. Exponha os locais das anastomoses arterial e venosa.
3. Utilizando a sua técnica de tunelização padrão, crie um túnel subcutâneo entre as incisões distal e proximal.
4. Coloque a prótese para acesso vascular neste túnel, tendo o cuidado de assegurar que a mesma não fica torcida.
5. Repita os passos 3-4 para o outro lado da prótese.
6. Posicione a prótese certificando-se de que a cruz central está situada no ápice e que a prótese forma uma ansa uniforme sem dobrar.

AS PRÓTESES RECTILÍNEAS NÃO FORAM CONCEBIDAS PARA SEREM COLOCADAS NUMA CONFIGURAÇÃO CURVA. O DESENHO PRÉ-CURVO É PREFERIDO PARA EVITAR A FORMAÇÃO DE DOBRAS.

Preparação da anastomose
• Depois da prótese ter sido colocada correctamente, está pronta para ser anastomosada ao vaso.
• A extremidade da prótese deve ser cortada em bisel para assegurar o posicionamento perfeito da prótese.
• A anastomose pode ser efectuada utilizando uma técnica de uma ou de duas suturas. A outra extremidade da prótese deve ser aparada
e anastomosada de maneira semelhante.

Nota: Embora a prótese possa ser cortada e/ou suturada ao longo de todo o seu comprimento, a zona de canulação pode oferecer maior resistência à passagem da agulha.

Sutura
- Obtêm-se os melhores resultados utilizando uma agulha não cortante e afunilada com um fio de sutura de monofilamento não absorvível de 5,0 ou 6,0 que é aplicado a uma distância adequada do bordo da prótese.
- Para minimizar a hemorragia na linha da sutura, puxe o fio de sutura num ângulo de 90° em relação à prótese.

Correcção cirúrgica
- Se for necessário reparar a prótese para acesso vascular através de cirurgia de bypass por interposição, selecione uma prótese com um diâmetro interno que corresponda ao diâmetro da prótese já implantada.
- A prótese pode ser suturada unindo-se a extremidade com o lado ou extremidade com extremidade dependendo das necessidades específicas de cada doente.
- Se for necessário reparar a prótese para acesso vascular com cirurgia de bypass por interposição, utilize apenas a zona de canulação para este procedimento. Esta zona é facilmente identificada pela linha dupla impressa conforme ilustrado na figura 2. Se não se seguir este procedimento, a prótese pode não satisfazer aos critérios da concepção de auto-vedação.

Para assegurar o melhor desempenho, a Vascutek recomenda uma anastomose extremidade com extremidade e não de extremidade com o lado.

Canulação
Introduza a agulha de acesso ao sangue num ângulo de 45° com o bisel virado para cima até a prótese ter sido penetrada.
Deve ter cuidado para não perfurar o lado oposto da prótese.

Para se obterem os melhores resultados:
- Alterne os locais de canulação. A canulação repetida na mesma zona pode danificar a parede da prótese e/ou levar à formação de um hematoma ou de um pseudoaneurisma.
- Os locais utilizados para a punção da agulha devem ser igualmente espaçados ao longo do comprimento subcutâneo da prótese.
- Não efectue a canulação a uma distância inferior a 2,5 cm da anastomose proximal ou distal. Ao ajustar a anastomose, maximize a quantidade de zona de linha dupla disponível para a canulação de acordo com o ilustrado na Figura 2.
- Para minimizar a infecção, é essencial a adesão rigorosa a uma técnica asséptica.
- Não efectue a canulação se houver sinais de infecção, hemorragia, tumefacção, edema, hematoma ou na ausência de um frémito forte.

Assim que a agulha tiver sido retirada, aplique uma compressão digital moderada não oclusiva no local de canulação para ajudar à hemostase rápida.
A compressão prolongada ou a utilização de pinças de estase podem causar a formação de coágulos, limitando o fluxo de sangue através da prótese.

Esterilização
As próteses para acesso vascular da Vascutek Ltd. são esterilizadas com óxido de etileno, são fornecidas estéreis e não devem ser reesterilizadas. As juntas das bolsas intermédia e interior têm que estar intactas. Qualquer dano nas referidas bolsas compromete e esterilização da prótese. Na eventualidade de danos na embalagem principal, o produto não deve ser utilizado, devendo ser imediatamente devolvido ao fornecedor.

Embalagem
SÓ O TABULEIRO INTERIOR PODE SER INTRODUZIDO NO CAMPO ESTÉRIL.

Rótulos adicionais
Na embalagem são incluídos rótulos adicionais para inclusão nos registos do doente para permitir o rastreio deste dispositivo.

Informações adicionais
Não exponha produtos de ePTFE a uma temperatura superior a 260 °C (500°F). O PTFE decompõe-se a temperaturas elevadas, originando produtos de decomposição tóxicos.

Bibliografia
1. Dados no ficheiro.

Tyvek® é uma marca comercial registada da Du Pont
Bruksanvisning
Svensk

Beskrivning
Denna serie vaskulära accesstransplantat från Vascutek Ltd är tillverkade av ePTFE (expanderad polytetrafluoroetylen) och finns i både raka och förbjudna versioner.

Det vaskulära accesstransplantatet är ett implantat med dubbel sammanhängande lager enligt bilden i Figur 1.

Det vaskulära accesstransplantatet har två olika zoner, varav en är utformad för anastomformation och suttering till det ursprungliga kälet och den andra är avsedd för kantering för att ge vaskulär åtkomst för hemodialys enligt Figur 2. Dessa är tydligt markerade på transplantatet.

Det förbjudna transplantatet har också ett kryss som markerar mittpunkten på kurvan.

Indikationer
Vascutek Ltds vaskulära åtkomstransplantat är indikerat för användning som en subkutan arteriovenös kanal för åtkomst till blod.

Det vaskulära åtkomstransplantatet kan punkteras för vaskulär åtkomst inom 24 timmar efter implanteringen. Dessa crusare är utformade för kantering och suturing till det ursprungliga kälet och den andra är avsedd för kantering för att ge vaskulär åtkomst för hemodialys.

Kontraindikationer
1. Dessa transplantat ska endast implanteras av transplantation/allmän/kärlkirurger som är vana vid de specifika tekniker som krävs för dessa medicinska anordningar.
2. Dessa proteser bör inte implanteras i patienter med överkänslighet mot ePTFE.

Varningar
1. Vid användning av embolektomi eller katetar för ballong-angioplastik i graftens lumen måste den fylla ballongen försiktigt passas mot graftens innerdiameter. Felaktig storleksbedömning av katetern eller överfyllnad av ballongen kan resultera i sprickor på antingen graften eller ballonen.
2. Accesstransplantatet har en viss elasticitet i längdled. Överdriven sträckning av protesen måste undvikas men lagom sträckning är nödvändig.
3. Skär till graften tillräckligt lång för att säkerställa att ingen ansträngning föreligger på anastomorer. Patientens kroppsmassa och troligen extrema kroppshållning måste räknas in vid bedömning av längd på graffen som skall implanteras. Om dessa aspekter inte beaktas kan anastomatisk sönderslitning uppstå vilket kan resultera i kräftig blödning, funktionsförlust eller möjlig amputation av kroppsdel, i värsta fall död.
4. När transplantatet punkteras inom områden ej avsedda för kantering (Figur 2) beter det sig på samma sätt som vanlig ePTFE.
5. TROMBEKTOMI
Om en postoperativ ocklusion uppträder kan det vaskulära transplantatet avkoaguleras enligt följande:
- Följ katetertillverkarens instruktioner angående storlek, urval och uppblåsning av ballong, och matcha ballongstorleken mot transplantatets interna diameter. Överdriven uppblåsning och dragning kan utvidga eller skada transplantatet.
- Vid användning av långsågade snitt, placera hållstyg i vardera änden av snittet innan embolektomikatetern förs in.
- Om ett tvåsågade snitt används behövs inga hållstyr och en horisontell madrassutur främjar ihophållningen.

Säkerhetsåtgärder
1. FÖRKOAGULERA INTE. Ingen förkoagulering krävs.
2. ANVÄND INTE EFTER ANGIVET UTTAGNINGSDATUM.
4. Klämmor kan skada den vaskulära
protesen. Icke-traumatiska klämmor, helst med mjukskodda käftar, bör användas med minimal kraft.

5. Förvara I ett rent, torrt utrymme med en temperatur högre än 0°C (32°F) och lägre än 50°C (122°F).

6. De potentiella komplikationer som kan uppstå med alla kirurgiska processer som använder en vaskulär protes inkluderar, men är inte begränsade till: aneurysm; anastomotisk störning eller ruptur av suturlinjen och/eller värdkärlet; emboli; infektion; blödning, oclusion; stenos; trombos; ögla/kompression; svullnad av den implanterade lemmen; hematom eller pseudoaneurysm; länkesyndrom och/eller huderosion.

7. Lät inte transplantatet bli vått. Exponering för olja, alkohol eller vattenbaserade lösningar under tryck påverkar de hydrofobiska egenskaperna i materialet och kan resultera i ökad serombildning.

8. Raka transplantat är inte avsedda att placeras i en böjd konfigurering.

9. Förböjd transplantat är inte avsedda att placeras i en rak konfigurering.

Operationsteknik
Teknik och tips för implantering

Allmänna kommentarer
• Ingen specialteknik krävs för att implantera det vaskulära accesstransplantatet.
• Transplantatet ska implanteras på samma sätt som konventionella ePTFE-transplantat.
• Välj en kulspetstunnelformare av lämplig storlek så att transplantatet sitter tätt.
• Använd vanlig tunnelteknik och –instrument för att placera transplantatet mellan de artäriska och venösa anastomisområdena.
• Skapa alltid tunnlar på lämpligt djup som medger enkel visualisering och palpering av det vaskulära åtkomstransplantatet.

Rak transplantatkonfigurering (Figur 3)
1. Gör två (2) snitt för proximal och distal åtkomst till implantatstället.
2. Exponera platserna för både artär och venös anastomos.
3. Använd vanlig tunnelteknik för att skapa en subkutan tunnel mellan de distala och proximala snitten.
4. Placera det vaskulära åtkomstransplantatet i denna tunnel och kontrollera noga att transplantatet inte snurras.

KONFIGURERING.

Förböjd transplantatkonfigurering (Figur 4)
1. Gör två (2) snitt för proximal och distal åtkomst till implantatstället.
2. Exponera platserna för både artär och venös anastomos.
3. Använd vanlig tunnelteknik för att skapa en subkutan tunnel mellan de distala och proximala snitten.
4. Placera den förstaidan av det vaskulära accesstransplantatet i denna tunnel och kontrollera noga att transplantatet inte snurras.
5. Upprepa steg 3-4 för den andra sidan av transplantatet.

5. Placera transplantatet så att det centrala krysset är placerat vid mittpunkten och att transplantatet formar en jämn kurva utan öglor.

FÖRBÖJDA TRANSPLANTAT ÄR INTE AVSEDDA ATT PLACERAS I EN RAK KONFIGURERING. DEN FÖRBÖJDA VERSIONEN ÄR ATT FÖREDRA FÖR ATT UNDVÄKA ÖGLOR.

Anastomotisk förberedelse
• När transplantatet har placerats rätt är det färdigt för anastomos till kärlet.
• Änden på transplantatet ska avfasas så att transplantatet ligger jämnt.
• Anastomosen kan utföras med en ensuturs- eller tvåsutursteknik. Den andra änden av transplantatet ska putsas och anastomeras på liknande sätt.

Obs: Transplantatet kan klippas av och/eller sutureras längs hela dess längd, men kan yleringsområdet kan ge mer motstånd mot nälen.

Suturering
• Det bästa resultatet uppnås med en avsmalnande, icke-skärande nål med icke-absorberande entrådig 5,0 eller 6,0 sutur som sys på lämpligt avstånd från transplantatets kant.
• För att minimera suturblojdning skall suturen dras I 90° vinkel från graften.

Kirurgisk ändring
• Om det visar sig nödvändigt att reparera det vaskulära accesstransplantatet med ett kirurgiskt mellanliggande bypasstransplantat, välj ett transplantat med samma insidesdiameter som det som f n sitter på plats.
• Transplantatet kan sutereras antingen ände mot sida eller ände mot ände, beroende på den
aktuella patientens behov.
• Om det är nödvändigt att reparera det vaskulära åtkomstransplantatet med ett kirurgiskt mellanliggande bypasstransplantat, använd endast kanyleringsdelen för denna process. Kanyleringsdelen kan lätt identifieras genom den dubbelstreckade linjen såsom visat i Figur 2. Om denna process inte följs kan transplantatet misslyckas att uppfylla sitt självförslutande utformningskriterium.

För att säkerställa bästa prestanda rekommenderar Vascutek anastomos ände mot ände och inte ände mot sida för ändringstransplantatet.

Kanylering
Sätt in blodätkomstnålen i 45° vinkel med fasade kanten uppåt tills transplantatet penetreras. Försiktighet måste vidtagas vid suturering så att graftens motsatta sida inte skadas.

För bästa resultat:
• Kanylera inte inom 2,5 cm från proximal eller distal anastomos. Vid utformning av anastomos, maximera det dubbestreckade området för kanylering enligt beskrivningen i Figur 2.
• Strikt efterlevnad av aseptisk teknik krävs för att minimera risken för infektion.
• Kanylera inte om det finns något tecken på infektion, blödning, svullnad, ödem, hematom eller om stark fremitus saknas.

När nålen har dragits ut, anbringa försiktigt icke-ocklusivt fingertryck för att komprimera kanyleringsstället och främja snabb hemostas. Överdrivet lång kompression eller bruk av stas-klämmor kan leda till proppformation, som begränsar blodflödet genom transplantatet.

Sterilisering

Förpackning
ENDAST DEN INNERSTA BRICKAN FÅR INFÖRAS INOM DET STERILA OMRIÄDET

Extra etiketter
Extra etiketter medföljer i förpackningen för insättning i patientjournal så att detta transplantat kan spåras.

Ytterligare information
Exponera inte ePTFE-produkter för temperaturer som överstiger 260 °C (500 °F). PTFE bryts ned vid höga temperaturer och bildar giftiga nedbrytningsprodukter.

Referenser:
1. Arkiverade data.

Tyvek® Du Pont Registered Trade Mark
Brugsvejledning
Dansk

Beskrivelse
Dette udvalg af Vasutek Ltd. vaskulære adgangsgrafter er fremstillet af ePTFE (ekspanderet polytetrafluorethylen), i både lige og for-bøjede versioner.

Den vaskulære adgangsgraft er en graft med dobbelt sammenbundne lag, som vist på Figur 1.

Vaskulær adgangsgraft har to distinkte zoner - den ene zone er beregnet til anastomoseformation og suturering til nativkar, den anden er beregnet til kanylering for vaskulær adgang for hæmodialyse, som vist på Figur 2. Disse er tydeligt afmærket på graften.

Den for-bøjede graft er også afmærket med et kryds, der angiver toppen af kurven.

Indikationer
Vascutek Ltd. vaskulær adgangsgraft er indiceret til oprettelse af subkutane arteriovenøse kanaler for blodtilførsel.

Vaskulær adgangsgraft kan punkteres for vaskulær adgang inden for 24 timer efter implantation, forudsat der ikke er nogen kontraindikationer herfor, som fx tegn på infektion, blødning, hævelse, ødema, hæmatoma eller hvis der ikke findes en stærk “snurren”.

BEMÆRK: Tidlig adgang kan være associeret med okklusion og reintervention.

Kontraindikationer
1. Disse grafter må kun implanteres af karkirurger, der har erfaring inden for de specifikke teknikker, der skal bruges til disse medicinske produkter.

2. Disse proteser må ikke implanteres i patienter, der udviser forstærkning over for ePTFE.

Advarsler
1. Når der bruges embolektomi eller ballonkatre til embolektomi angioplastik inde i lumen skal den oppustede ballons størrelse omhyggeligt passe til graftens inderdiameter. Hvis ikke katetret måles korrekt eller ballonen oppustes for meget, kan det resultere i ruptur af enten graften eller ballonen.

2. Den vaskulære adgangsgraft har en vis elasticitet i længderetningen. For megen tension på graften skal undgås, men moderat tension er overordentlig vigtig.

3. Skær graften lang nok til imødekomme et fuldt stræk af kroppen i det pågældende område og for at sikre, at der ikke er nogen tension på anastomosen. Patiens legemsmasse og de sandsynlige ekstreme tilstande skal tages i betragtning, når længden af graften bestemmes, ellers kan der opstå tension på anastomosen under fuld kropsstrækning. Hvis ikke disse aspekter overvejes kan det forårsages overrinning af anastomosen hvilket kan føre til for megen blødning, funktionstab eller mulig amputation af ekstremiteten og i værste tilfælde dødsfald.

4. Hvis graften punkteres på ikke-kanyleringsområderne (Figur 2), vil den opføre sig på samme måde som almindelig ePTFE.

5. THROMBOTEKTOMI
Hvis der skulle opstå en postoperativ okklusion, kan vaskulær adgangsgraft afklottes som følger:

• Følg kateterproducentens anvisninger mht. størrelse, udvælgelse og ballonoppustning, og match ballonstørrelsen til graftens indre diameter. Hvis ballonen oppustes for meget, eller der trækkes for hårdt i den, kan det udvide eller beskadige graften.

• Hvis der udføres en longitudinal incision, skal der placeres holdsuturer i hver ende af incisionen inden embolektomi-kateteret indføres.

• Hvis der anvendes en tværgående incision, er det ikke nødvendigt at placere holdsuturer, hvorimod en horisontal madrassuturteknik vil hjælpe lukningen.

Forholdsregler
1. PÆKLOT IKKE GRAFTEN. Det er ikke nødvendigt at præklotte.

2. MÅ IKKE BRUGES EFTER DEN ANGIVNE UDLØBSDATO.

4. Afklemning kan beskadige alle vaskulære proteser. Der skal bruges atraumatiske tænger, hvis muligt med bløde kæber, og der må kun bruges minimal kraft hertil.

5. Opbevar grafter på et rent, tørt område der ikke må være under 0°C og ikke over 50°C.

6. Komplikationer, der kan opstå i forbindelse med kirurgiske procedurer, der involverer brugen af vaskulære proteser, omfatter, men er ikke begrænset til: aneurisme; anastomotisk overrivning eller ruptur af suturranden og/eller værtskarret; embolier; infektion; blødning; okklusion; stenose; trombose; kinkning/kompression; hævelse af det implanterede del; dannelse af hämatomer eller pseudoanurismer; steal syndrom og/eller hæderosion.

7. Undlad at fugte graften. Udsættelse for olie, alkohol eller vandholdige pløsninger, hvis under tryk, vil indvirke på de hydrofobiske egenskaber af materialet hvilket kan resultere i en forøgelse af seromadannelse2.

8. Lige grafter er ikke designet til at blive placeret i en bøjet konfiguration.

9. For-bøjede grafter er ikke designet til at blive placeret i en lige konfiguration.

Operationsteknik
Implantationsteknik & tips
Generelle punkter
• Der kræves ikke nogen speciel teknik til at implantere vaskular adgangsgrafter.
• Graften skal implanteres på samme måde som en normal ePTFE graft.
• Vælg en tunnelindføring af passende størrelse med kugleformet spids for at sikre, at graften kommer til at passe fint.
• Anvend en standard tunnelindføringsteknik og instrumentering til at placere graften mellem arterielle og venøse anastomotiske steder.
• Der skal altid skabes tuneller ved behørige dybder, som vil give nem visualisering og palpation af den vaskulære adgangsgraft.

Lige graft konfiguration (Figur 3)
1. Udfør to (2) incisioner for proksimal og distal indgang til implantatstedet.
2. Eksponér stederne for både arteriel og venøs anastomose.
3. Brug den normale tunnelindføringsteknik og skab en subkutan tunnel mellem den distale og proksimale incision

4. Placér den vaskulære adgangsgraft i denne tunnel; pas på, at graften ikke drejes.

LIGE GRAFTER ER IKKE DESIGNET TIL AT BLIVE PLACERET I EN BØJET KONFIGURATION.

For-bøjet graft konfiguration (Figur 4)
1. Udfør to (2) incisioner for proksimal og distal indgang til implantatstedet.
2. Eksponér stederne for både arteriel og venøs anastomose.
3. Brug den normale tunnelindføringsteknik og skab en subkutan tunnel mellem den distale og proksimale incision
4. Placér den første side af den vaskulære adgangsgraft i denne tunnel; pas på, at graften ikke drejes.
5. Gentag trin 3-4 for den anden side af graften.
6. Placér graften således, at det midterste kryds er placeret i toppen og at graften danner en jævn bue uden forvirring.

FOR-BØJEBEDE GRAFTER ER IKKE DESIGNET TIL AT BLIVE PLACERET I EN LIGE KONFIGURATION. DET FOR-BØJEBEDE DESIGN ER AT FORETRÆKKE FOR AT UNDGÅ KINKNING.

Anastomotisk forberedelse
• Når graften er blevet placeret korrekt, er den parat til anastomose til karret.
• Graften skal have en skrå ende for at sikre, at graften ligger jævnt.
• Anastomosen kan udføres med en- eller to-suturs teknik. Den anden ende af graften skal afskæres og anastomosen udføres på samme måde.

Bemærk: Graften kan skæres og/eller sutureres langs hele dens længde; kanylingsdelen kan dog yde mere modstand overfor nålen.

Suturering
• De bedste resultater opnås ved at bruge en ikke skærende taper nål med ikke-absorbérbar monofilament 5.0 eller 6.0 sutur, der sættes i en passende afstand fra graftens kant.
• For at minimere blødning i suturranden skal suturen trækkes i en vinkel på 90° i forhold til graften.

Kirurgisk revision
• Hvis det skulle blive nødvendigt at reparere den vaskulære adgangsgraft med en kirurgisk interposition bypass graft, skal der vælges en graft med en indvendig diameter, der matcher
den, der allerede findes.

- Graften kan enten sutureres ende-til-side eller ende-til-ende, alt afhængig af den pågældende patients krav.
- Hvis det er nødvendigt at reparere den vaskulære adgangsgraft med en kirurgisk interposition bypass graft, skal kun kanyleringsdelen bruges til denne procedure. Kanyleringsdelen er nem at identificere ved hjælp af den dobbelte linie, som vist på Figur 2. Hvis denne procedure ikke følges, kan det medføre, at graften ikke opfylder dens selvforseglende designkriterier.

For at sikre den bedste ydelse anbefaler Vascutek en ende-til-ende og ikke en ende-til-side anastomose for revisionsgraften.

Kanylering

Kanyler til blodadgang skal indsættes i en vinkel på 45° med spidsen nedad, indtil graften er penetreret.

Ved suturering skal der udvises omhyggelighed for ikke at stikke hul på den modsatte side af graften.

For de bedste resultater:

- Der må ikke kanyleres inden for 2,5cm af proksimale og distale anastomoser. Når anastomosen tilpasses, skal længden af det dobbelt linje-område, som er tilgængeligt for kanylering, maksimeres, som vist på Figur 2.
- For at minimere infektion skal aseptisk teknik overholdes strenkt.
- Der må ikke kanyleres, hvis der er tegn på infektion, blødning, hævelse, ødema, hæmatoma eller hvis der ikke findes en stærk “snurren”

Når nålen er trukket ud, skal der anvendes let ikke-okklusiv digital kompression til kanyleringsstedet for at fremme hurtig hæmostase.

Sterilisering

Vascutek Ltd. vaskulær adgangsgrafter er blevet steriliseret med ethylenoxid, leveres sterile og må ikke resteriliseres. Forseglingen på den mellemste og inderste pose skal være intakt. Enhver beskadigelse af poserne gøre protesematerialet til leverandøren. I tilfælde af beskadigelse af den primære indpakning må produktet ikke bruges, og det skal straks returneres til leverandøren

Indpakning

KUN DEN ALLERINDERSTE BAKKE MÅ INTRODUCERES I DET STERILE OMRÅDE

Yderligere mærkater

Pakke indeholder yderligere mærkater, som kan vedlægges patientens journal for at gøre det muligt at spore enheden.

Yderligere oplysninger

Udsæt ikke ePTFE-produkter for temperaturer over 260 °C (500 °F). PTFE nedbrydes ved høje temperaturer og producerer giftige nedbrydningsprodukter.

Litteratur

1. Arkiverede data.

Tyvek® Du Pont registreret varemærke.
Brukerveiledning
Norsk

Beskrivelse
Dialysegraftene fra Vascutek Ltd. er produsert av ePTFE (utvidet polytetrafluoroetylen), både i rette og prekurvede versjoner.
Dialysegraftet er laminert i dobbelt lag som vist i figur 1.
Dialysegraftet har to atskilte soner, en sone er utformet for anastomosedannelse og suturering til native kar, den andre er utformet for kanylering i forbindelse med kartilgang for hemodialyse, som vist i figur 2. Disse er tydelig merket på graftet.
Det ferdigkurvede graftet har også et kryss for å angi toppunktet for kurven.

Indikasjoner
• Dialysegraftet fra Vascutek Ltd. er indirert til bruk som en subkutan arteriovenøs kanal for blodtilgang.
Dialysegraftet kan punkteres for kartilgang innen 24 timer etter implantering, forutsatt at det ikke foreligger kontraindikasjoner, dvs. at det ikke er tegn på infeksjon, blødnings, hevelse, ødem, hematom eller at det ikke er en sterk spenning i vevet.
MERK: Tidlig tilgang kan være forbundet med okklusjon og reintervensjon1.

Kontraindikasjoner
1. Disse graftene må bare implanteres av karkirurger som er trent i de bestemte teknikkene som er påkrevet for disse medisinske anordningene.
2. Disse protesene må ikke implanteres i pasienter som viser tegn på overfølsomhet.

Advarsler
1. Når man bruker embolektomi- eller ballongangioplastikk-kateter i lumen på et graft, må størrelsen på den inflaterte ballongen nøye tilpasses graftets innvendige diameter. Hvis man unnlater å tilpasse kateteret riktig eller inflaterer ballongen for mye, kan det føre til ruptur av enten graftet eller ballangen.
2. Dialysegraftet er elastisk i lengderetningen. Unngå for høy tension på protesten, men moderat tensjon er ytterst nødvendig.
3. Skjær graftet langt nok for å være sikker på at det ikke blir noe strek på anastomosen.

Pasientens kroppsmasse og de sannsynlige ytterlighetene av kroppstillingen må overveies når man bestemmer lengden på graftet som skal implanteres, ellers kan det legges belastning på anastomosen når kropp eller lem strekkes ut i full lengde. Hvis man unnlater å overveie disse sidene kan det føre til ruptur av anastomosen, som kan resultere i kräftig blødning, funksjonstap eller mulig amputasjon av lem og/eller tiefle dødsfall.

4. Når graftet punkteres utenfor kanyleringsområdene (figur 2), vil den fungere på samme måte som et standard ePTFE graft.

5. TROMBEKTOMI
Dersom det oppstår postoperativ okklusjon, kan dialysegraftet behandles slik:
• Følg kateterprodusentenes instrukser angående ballonginflasjon, og egnet ballongstørrelse til den indre diameteren til graftet. Overinflasjon og drag kan dilatere eller skade graftet.
• Ved bruk av et langsgående innsnitt, plasser holdesuturer i hver ende av innsnittet før innføring av embolektomikateteret.
• Hvis det brukes tverrgående innsnitt, er det ikke nødvendig med holdesuturer, og en horisontal madrass-sutur vil lette lukkingen.

Forholdsregler
1. PREKLOTTING ER IKKE NØDVENDIG.
2. MÅ IKKE BRUKES ETTER ANGITT UTLØPSDATO.
3. SKAL IKKE RESTERILISERES. KUN TIL ENGANGSBRUK.
5. Oppbevares på et rent, tørt mellom 0°C og
50°C.

6. Mulige komplikasjoner som kan oppstå i forbindelse med kirurgiske prosedyrer som omfatter bruk av vaskulære proteser inkluderer, men er ikke begrenset til: aneurisme; anastomoseruptur eller revning av sutturrand og/eller vertsblodåren; embolitilfeller; infeksjon; blødning; okklusjon; stenose; thrombose; vriдинg/kompresjon; hevelse i ekstremitten, dannelse av hematomer eller pseudoaneurismen; “steal syndrome” og/eller huderosjon.

7. Unngå å fukte graftet. Eksponering for olje, alkohol eller vannholdige opplosninger under trykk vil endre graftets hydrofobe egenskaper og kan fører til økt seromdannelse.

8. Rette grafter er ikke beregnet på å plasseres i en buet konfigurasjon.

Operasjonsteknikk
Implanteringsteknikk og tips
Generelle punkter
• Det kreves ingen spesiell teknikk for å sette inn dialysegraftet.
• Graftet implanteres på samme måte som et tradisjonelt ePTFE-graft.
• Velg et tunnelleringrør med patronformet spiss og av passende størrelse slik at graftet passer godt.
• Bruk standard tunnelleringsteknikk og – instrumenter for å plassere graftet mellom arterie og vene.
• Lag alltid tunneller i korrekt dybde som gir enkel visualisering og palpasjon av dialysegraftet.

Rett graft-konfigurasjon (Figur 3)
1. Lag to (2) innsnitt for proksimal og distal åpning for implantasjon.
2Blottlegg områdene for både arteriell og venøs anastomose.
4. Plasser dialysegraftet i tunnellen; påse at graftet ikke virr seg.

RETTE GRAFT ER IKKE BEREGET PÅ Å PLESSERES I EN BUET KONFIGURASJON.

Ferdigbuede graft-konfigurasjon (Figur 4)
1. Lag to (2) innsnitt for proksimal og distal åpning for implantasjon.
2. Blottlegg områdene for både arteriell og venøs anastomose.
4. Stikk den første enden av Dialysegraftet inn i tunnellen; påse at graftet ikke virr seg.
5. Gjenta trinn 3-4 for den andre siden av graftet.
6. Justér graftet for å sikre at det midtre krysset er på toppen av sløyfen og at sløyfen er jevn uten knekk.

FERDIGBUEDE GRAFTER ER IKKE KONSTRUERT FOR Å BLI BRUKT I EN RETT KONFIGURASJON. DEN FERDIGBUEDE GRAFTET ER KONSTRUERT FOR Å UNGÅ KNEKK.

Anastemoseforberedelse
• Når graftet er korrekt plassert, er det klart for anastomose til karet.
• Enden av graftet skal skråklippes for å oppnå en jevn tilpasning.
• Anastomosen kan uføres ved hjelp av en eller to-suturteknikk. Den andre enden av graftet skal tilpasses og suturet på samme måte.

Merk: Graftet kan kuttes og/eller suturet langs hele lengden, suttering kan imidlertid gi mer motstand i den delen som er beregnet for kanylering.

Suturering
• De beste resultatene oppnås ved hjelp av konisk, ikke-skjærende nål med ikke-resorberbar monofilament sutur 5.0 eller 6.0, sydd i passende avstand fra graftets kant.
• For å minimere blødning i suturranden skal man trekke suturen i en vinkel på 90° til graftet.

Kirurgisk revisjon
• Dersom det er nødvendig å reparere dialysegraftet med et mellomliggende bypassgraft, velg et graft med samme indre diameter som det som sitter på plass.
• Graftet kan suturet enten ende-til-side eller ende-til-ende, avhengig av kva som egner seg for pasienten.
• Hvis det er nødvendig å reparere dialysegraftet med et mellomliggende bypassgraft, bruk bare kanyléringsdelen for denne prosedyren. Kanyléringsdelen er enkel å identifisere med den doble streken som vist i figur 2. Hvis ikke denne prosedyren følges, kan dette føre til at graftet mister selvforsegrende funksjon.

For å sikre best mulig resultat anbefaler Vascutek en ende-til-ende og ikke ende-til-side
anastomose for revisjonsgraftet.

Kanylering
Sett inn kanylen i 45° vinkel med skråkanten opp til graftet penetres.
Utvis forsiktighet slik at du ikke punkterer den motsatte siden av graftet.

For best mulig resultat:
• Ikke kanyler nærmere enn 2,5 cm for den proksimale eller distale anatomosen. Ved tilpassing av anastomosen, maksimer mengden dobbellstrekområde som er tilgjengelig for kanylering, som vist i figur 2.
• For å minimalisere infeksjonfaren, kreves aseptisk teknikk.
• Ikke kanyler hvis det er tegn på infeksjon, blødning, hevelse, ødem, hematom eller hvis det ikke foreligger en sterk "thrill".

Når kanylen er trukket ut, trykk forsiktig med fingeren for å komprimere kanyleringsstedet for å oppnå rask hemostase. Trykk imidlertid ikkje så hardt at graftet okkluderes
Langvarig trykk eller bruk av staseklemmer kan resultere i avleiringer, og derved redusere blodstrømmen gjennom graftet.

Sterilisering
Vascutek Ltd. dialysegsgraft er sterilisert i etylenoksid, leveres sterile og må ikke steriliseres på nytt. Forseglingen må være intakt både på den mellomste og den indre forpakningen. Skade på forpakningene gir et usterilt produkt.
I tilfelle skade på den ytre emballasjen, må produktet ikke brukes og må omgående returneres til leverandøren.

Pakning
SETT KUN DET INNERSTE BRETTET I DET STERILE FELTET.

Ekstra merkelapper
Ekstra merkelapper er vedlagt forpakningen, beregnet på pasientens journal, slik at implantatet kan spores om nødvendig.

Tilleggsinformasjon
Produkter av ePTFE skal ikke utsettes for temperatur over 260 °C (500 °F). PTFE brytes ned ved høye temperaturer og produserer giftige nedbrytningsstoffer.

Referanser
1. Data på fil.

Tyvek® Du Pont registrert varemerke.
Περιγραφή
Τα μοσχεύματα αυτής της σειράς μοσχευμάτων αγγειακής προσπέλασης της Vascutek Ltd. κατασκευάζονται από ePTFE (διεσταλμένο πολυτετραφθοαιθυλένιο), σε δύο τύπους: ευθέα και προκεκαμμένα.

Το μόσχευμα αγγειακής προσπέλασης αποτελείται από διπλή συγκολλημένες στιβάδες, όπως φαίνεται στην εικόνα 1. Το προκεκαμμένο μόσχευμα φέρει επίσης ένα σταυρό που υποδεικνύει την κορυφή της καμπύλης.

Ενδείξεις
Το μόσχευμα αγγειακής προσπέλασης της Vascutek Ltd. ενδείκνυται για χρήση ως υποδόριος αρτηριοφλεβικός αγωγός για πρόσβαση στην κυκλοφορία του αίματος. Το μόσχευμα αγγειακής προσπέλασης μπορεί να διατρηθεί για να επιτευχθεί αγγειακή πρόσβαση εντός 24 ωρών από την εμφύτευση, με την προϋπόθεση ότι δεν υπάρχουν αντενδείξεις, δηλαδή οποιαδήποτε σημείο λοίμωξης, αιμορραγίας, διόγκωσης, οιδήματος, αιματώματος ή απουσία ισχυρού ροίζου.

ΣΗΜΕΙΩΣΗ:
Η πρόωρη πρόσβαση μπορεί να συσχετιστεί με απόφραξη και επαναλαμβανόμενη παρέμβαση.1

Αντενδείξεις
1. Αυτά τα μοσχεύματα θα πρέπει να εμφυτεύονται αποκλειστικά από αγγειοχειρουργούς οι οποίοι διαθέτουν εμπειρία στις ειδικές τεχνικές που απαιτούν αυτές οι ιατρικές συσκευές.

5. ΘΡΟΜΒΕΚΤΟΜΗ
Σε περίπτωση που συμβεί μετέγχειρητική απόφραξη, η απομάκρυνση του θρόμβου από το μόσχευμα αγγειακής προσπέλασης μπορεί να γίνει ως εξής:
• Ακολουθήστε τις οδηγίες του κατασκευαστή του καθετήρα όσον αφορά στο μέγεθος, την επιλογή και τη διόγκωση του μπαλονιού, αντιστοιχίζοντας το μέγεθος του μπαλονιού με την εσωτερική διάμετρο του μοσχεύματος. Η υπερβολική διόγκωση και η υπερβολική έλξη ενδέχεται να προκαλέσουν διαστολή ή ζημιά στο μόσχευμα.
• Όταν πραγματοποιείται επιμήκης τομή, τοποθετήστε ράμματα καθήλωσης σε κάθε άκρο της τομής προτού εισαχθεί ο καθετήρας.
εμβολεκτομής.
• Εάν πραγματοποιείτε εγκάρσια τομή, δεν χρειάζονται ράμματα καθήλωσης και η σύγκλειση θα διευκολυνθεί εάν χρησιμοποιηθεί ορίζοντα συρφαρή κατά στρώματα.

Προφυλάξεις
1. ΜΗΝ ΠΡΑΓΜΑΤΟΠΟΙΕΙΤΕ ΠΡΟΗΓΟΥΜΕΝΗ ΘΡΟΜΒΩΣΗ ΑΙΜΑΤΟΣ. Δεν απαιτείται προηγθείδα θρόμβωση αίματος.
2. ΜΗΝ ΧΡΗΣΙΜΟΠΟΙΕΙΤΕ ΜΕΤΑ ΤΗΝ ΑΝΑΓΡΑΦΟΜΕΝΗ ΗΜΕΡΟΜΗΝΙΑ ΛΗΞΗΣ.
3. ΜΗΝ ΕΠΑΝΑΠΟΣΤΕΙΡΩΝΕΤΕ. ΜΙΑΣ ΧΡΗΣΗ ΜΟΝΟ.
• Κανένα επαναταξινομογράφηση, απεπεξεργασία ή επαναποστείρωση.
• Δεν απαιτείται ειδική τεχνική για την εμφύτευση του μοσχεύματος αγγειακής προσπέλασης.
• Το μόσχευμα θα πρέπει να εμφυτεύεται με τον ίδιο τρόπο όπως τα συμβατικά μοσχεύματα από ePTFE.
• Επιλέξτε ένα εργαλείο διάνοιξης σήραγγας κατάλληλου μεγέθους, με σφαιρικό άκρο, για να διασφαλίσετε ότι το μόσχευμα θα εφαρμόσει σταθερά.
• Χρησιμοποιήστε τυπική τεχνική διάνοιξης σήραγγας για να τοποθετήσετε το μόσχευμα μεταξύ των σημείων αρτηριακής και φλεβικής αναστόμωσης.
• Να διανοίγετε πάντοτε σήραγγες σε κατάλληλο βάθος ώστε να διευκολύνεται η απεικόνιση και η ψηλάφηση του μοσχεύματος αγγειακής προσπέλασης.

Διαμόρφωση ευθέος μοσχεύματος (Εικόνα 3)
1. Πραγματοποιήστε δύο (2) τομές για να δημιουργήσετε την εγγύς και την περιφερική είσοδο του σημείου εμφύτευσης.
2. Αποκαλύψτε τα σημεία τόσο της αρτηριακής και της φλεβικής αναστόμωσης.
3. Εφαρμόζοντας τυπική τεχνική διάνοιξης σήραγγας, δημιουργήστε μια υποδόρια σήραγγα μεταξύ της εγγύς και της περιφερικής τομής.
4. Τοποθετήστε το μόσχευμα αγγειακής προσπέλασης μέσα στη σήραγγα αυτή, φροντίζοντας ώστε το μόσχευμα να μην περιστρέφεται.

ΤΑ ΕΥΘΕΑ ΜΟΣΧΕΥΜΑΤΑ ΔΕΝ ΕΧΟΥΝ ΣΧΕΔΙΑΣΤΕ ΓΙΑ ΝΑ ΤΟΠΟΘΕΤΟΥΝΤΑΙ ΣΕ ΚΥΡΤΗ ΔΙΑΜΟΡΦΩΣΗ.

Διαμόρφωση προκεκαμμένου μοσχεύματος (Εικόνα 4)
1. Πραγματοποιήστε δύο (2) τομές για να δημιουργήσετε την εγγύς και την περιφερική είσοδο του σημείου εμφύτευσης.
2. Τοποθετήστε τα σημεία τόσο της αρτηριακής και φλεβικής αναστόμωσης.
όσο και της φλεβικής αναστόμωσης.
3. Εφαρμόζοντας τυπική τεχνική διάνοιξης σήραγγας, δημιουργήστε μια υποδορία σήραγγα μεταξύ της εγγύς και της περιφερεικής τους.
4. Τοποθετήστε το ένα σκέλος του μοσχεύματος αγγειακής προσπέλασης μέσα στη σήραγγα αυτή, φροντίζοντας ώστε το μόσχευμα να μην περιστρέφεται.
5. Επαναλάβετε τα βήματα 3-4 για το δεύτερο σκέλος του μοσχεύματος.
6. Τοποθετήστε το μόσχευμα φροντίζοντας ώστε ο κεντρικός σταυρός να βρίσκεται στην κορυφή και το μόσχευμα να σχηματίζει έναν ομαλό βρόχο χωρίς στρέβλωση.

ΣΗΜΕΙΩΣΗ:
- Εάν χρειαστεί επιδιόρθωση του μοσχεύματος αγγειακής προσπέλασης με μόσχευμα παράκαμψης χειρουργικής παρεμβολής, κρητιδογράφηστε μόνο το τμήμα καθετηριασμού για τη διαδικασία αυτή. Το τμήμα καθετηριασμού αναγνωρίζεται εύκολα από τη διπλή τυπωμένη γραμμή, όπως φαίνεται λεπτομερώς στην εικόνα 1.
- Εάν δεν ακολουθήσετε αυτή τη διαδικασία, το μόσχευμα πιθανόν να μην πληροί πλέον τα κριτήρια αυτοστεγανοποιητικού σχεδιασμού του.

Για τη διασφάλιση βέλτιστης απόδοσης, η Vasutek συνιστά τη δημιουργία τελικοτελικής και όχι τελικότελης αναστόμωσης για το μόσχευμα αναθεώρησης.

Καθετηριασμός

Εισαγάγετε την βελόνα προσπέλασης στην κυκλοφορία του αίματος υπό γωνία 45°, με το λοξό άκρο προς τα επάνω, μέχρι ότου διατρηθεί το μόσχευμα.

Προετοιμασία της αναστόμωσης
- Αφού το μόσχευμα τοποθετηθεί σωστά, είναι έτοιμο για αναστόμωση στο αγγείο. Το άκρο του μοσχεύματος πρέπει να είναι ολόκληρο προκειμένου το μόσχευμα να εφαρμόζεται όμολα.
- Η αναστόμωση μπορεί να εκτελεστεί εφαρμόζοντας τεχνική ενός ή δύο ραμμάτων. Το άλλο άκρο του μοσχεύματος πρέπει να επαναλαμβάνεται επανειλημμένα στην ίδια περιοχή.

Σύμφωνα με την Vascutek, η σημείωση του τμήματος καθετηριασμού παρακαμένου μοσχεύματος μπορεί να συνιστά χρήση τεχνικής διανόιας, απαιτείται αυστηρή τήρηση άσηπτης είσοδου και όσο το δυνατόν μεγαλύτερη, όπως φαίνεται λεπτομερώς στην εικόνα 1.

Συμβουλές
- Καλύτερα αποτελέσματα επιτεύχθηκαν εάν προσπελάστηκε μια κοινή, μη αιχμηρή βελόνα με μια κοινή αίφνη μονόκλωνο ράμμα με γωνία 5.0 ή 6.0 που θα συμπεράνε σε κατάλληλη απόσταση από την άκρη του μοσχεύματος.
- Για να μειώσετε την αιμορραγία στη γραμμή της ραμής, ενδέχεται να γίνεται αφαίρεση της αιμορραγίας από την άκρη του μοσχεύματος. Μπορεί να γίνει αυτό πιθανό με μια κοινή αίφνη μονόκλωνο ράμμα με γωνία 90° προς το μόσχευμα.

Χειρουργική επέμβαση αναθεώρησης
- Σε περίπτωση που χρειάστε επιδιόρθωση του μοσχεύματος αγγειακής προσπέλασης, μπορεί να επιλέξετε μια μόσχευμα αντίστοιχης εσωτερικής διαμέτρου με το ήδη τοποθετημένο μόσχευμα. Προσέξτε ότι το μόσχευμα μπορεί να συρραφεί είτε τελικότελης είτε τελικοπλάγιας αναστόμωσης, αντίστοιχης εσωτερικής διαμέτρου με το ήδη τοποθετημένο μόσχευμα. Μπορεί να επιλέξετε μια μόσχευμα αντίστοιχης εσωτερικής διαμέτρου με το ήδη τοποθετημένο μόσχευμα. Προσέξτε ότι το μόσχευμα μπορεί να πιθανό με μια κοινή αίφνη μονόκλωνο ράμμα με γωνία 90° προς το μόσχευμα.
ισχυρού ροίζου.
Αφού αποσύρετε τη βελόνα, πιέστε απαλά με το δάκτυλο το σημείο καθετηριασμού χωρίς να το αποφράξετε, προκειμένου να επιτευχθεί ταχεία αιμόσταση.
Η παρατεταμένη συμπίεση ή η χρήση σφιγκτήρων στάσης ενδέχεται να οδηγήσει σε σχηματισμό θρόμβων, περιορίζοντας τη ροή του αίματος διαμέσου του μοσχεύματος.

Αποστείρωση
Τα μοσχεύματα αγγειακής προσπέλασης της Vasocure Ltd. αποστειρώνονται με αιθυλενοξείδιο, παρέχονται στείρα και δεν πρέπει να επαναποστειρώνονται. Η σφραγισμένη συσκευασία τόσο στην ενδιάμεση όσο και στην εσωτερική θήκη πρέπει να είναι άθικτες. Τυχόν ζημιά στις θήκες καθιστά την πρόθεση μη στείρα.
Στην περίπτωση που η πρωτεύουσα συσκευασία έχει πάθει ζημιά, το προϊόν δεν πρέπει να χρησιμοποιηθεί και πρέπει να επιστραφεί αμέσως στον προμηθευτή.

Συσκευασία
ΣΤΟ ΣΤΕΙΡΟ ΠΕΔΙΟ ΕΠΙΤΡΕΠΕΤΑΙ Η ΕΙΣΑΓΩΓΗ ΜΟΝΟΝ ΤΟΥ ΕΣΩΤΕΡΙΚΟΥ ΔΙΣΚΟΥ

Πρόσθετες ετικέτες
Στη συσκευασία εσωκλείονται πρόσθετες ετικέτες για να συμπεριληφθούν στο φάκελο του ασθενούς, προκειμένου να είναι δυνατός ο εντοπισμός αυτής της συσκευής.

Πρόσθετες πληροφορίες
Μην εκθέτετε προϊόντα από ePTFE σε θερμοκρασίες άνω των 260 °C (500°F). Το PTFE αποσυντίθεται σε αυξημένες θερμοκρασίες, παράγοντας τοξικά προϊόντα αποδόμησης.

Βιβλιογραφία
1. Δεδομένα στο αρχείο.

Tyvek® Du Pont Registered Trade Mark
概要
バスクテック社製アクセス人工血管は、ストレートとプレカーブいずれの仕様ともePTFE(延伸ポリテトラフルオロエチレン)製です。アクセス人工血管は、図1に示す通り二層を接着した人工血管です。アクセス人工血管には図2に示す通り、吻合部形成および宿主血管との縫合に適した部分と、血液透析時の血管アクセスのための穿刺に適した部分、2つの部分があります。2つの部分は、明確にマークされています。また、プレカーブ仕様ではカーブの頂点にX印が印字してあります。

適応
バスクテック社製アクセス人工血管は、プラッドアクセスのための皮下動静脈シャントとしての使用に適応します。感染、出血、浮腫、血腫の兆候が認められる、あるいは十分な“スリル”が確認できないなど、禁忌の状態でなければ、アクセス人工血管は移植後24時間以内に血管アクセス目的で穿刺することが可能です。

禁忌
1. 本品は人工血管移植術に必要な技術および経験を有する血管外科医のみが移植することできます。
2. ePTFEに対するアレルギーのある患者には使用しないで下さい。

警告
1. 人工血管内での塞栓除去術もしくは血管バルーン形成術を行う際には、拡張したバルーンのサイズが人工血管の内径と一致するよう注意して下さい。カテーテルのサイズが適切でない場合、あるいはバルーンを拡張した場合、人工血管を破壊する恐れがあります。
2. アクセス人工血管は長軸方向に弾性があります。人工血管を過度に伸張しないで下さい。ただし、適度な伸張は必須です。
3. 受け取った人工血管を十分な長さで切断してください。吻合部に負荷をかけないように、人工血管を十分な長さで切断してください。吻合部に負荷をかけないためには、患者の体重や体重を考慮に入れてください。これらの要素を考慮しない場合、吻合部が破壊し、機能喪失あるいは脈または脚の切断の恐れ、最悪の場合には死に至る可能性があります。
4. 人工血管の非穿刺部（図2）を穿刺した場合には、通常のePTFE人工血管と同様に機能します。
5. 血栓除去術後閉塞が生じた場合、下記の方法でアクセス人工血管の血栓除去を行うことができます。

注意
1. プレクットしないで下さい。プレクッティングは不要です。
2. 表示された使用期限を過ぎた場合には、使用しないで下さい。
3. 再滅菌しないで下さい。本品の使用は1回限りです。再使用、再処理、再滅菌しないで下さい。再使用、再処理、再滅菌すると、商品の構造に不備が生じ、製品の不具合につながり、しては患者やユーザーに健康障害や死に至らしめることがあります。再使用、再処理、再滅菌すると本品の構造に不具合が生じ、製品の不具合につながり、しては患者やユーザーに健康障害や死に至らしめることがあります。再使用、再処理、再滅菌すると、商品の構造に不備が生じ、製品の不具合につながり、しては患者やユーザーに健康障害や死に至らしめることがあります。再使用、再処理、再滅菌すると、商品の構造に不備が生じ、製品の不具合につながり、しては患者やユーザーに健康障害や死に至らしめることがあります。
4. 鉗子操作により人工血管を損傷させることがあります。非外傷性の鉗子、理想的には把持部が軟質材の鉗子を用い、最小限の把持力で使用して下さい。
5. 乾燥した涼しい場所で、0℃から50℃で保管してください。
6. 人工血管を使用したあらゆる外科治療において、下記に限定されるものではありませんが、以下の合併症が生じることがあります。虚血、吻合部破壊または縫合糸が宿主血管の断端、血栓形成、感染、出血、閉塞、狭帯、血栓症、脅威または転換、移植肢の腫脹、血腫または仮性動脈瘤形成、スチール症候群および皮膚のびらん。
7. 人工血管を濡らさないようにして下さい。
油性、アルコール性、水性などの液体で圧力を作用させると、素材の疎水性に影響を与え、血清腫形成を生じることがあります。\(^2\)

8. ストレート仕様の人工血管はカーブした留置には適しません。

9. プレカーブ仕様の人工血管はストレート形状の留置には適しません。

手技
移植手技と注意点一般的注意
・アクセス人工血管は、移植時に特別な手技を必要としません。
・本品は通常のePTFE人工血管と同様の方法で移植してください。
・人工血管に適したサイズの弾丸形チップ付きトンネラーを使用してください。
・通常のトンネリング手技および器具を用いて動脈および静脈の吻合部間に人工血管を留置してください。
・皮下トンネルは、アクセス人工血管の視認および触診が容易になるよう適切な深さで作製してください。

ストレート仕様人工血管（図3）
1. 移植部位の中枢側および末梢側に、二箇所の切開を作製します。
2. 動脈および静脈の吻合部位を露出します。
3. 通常のトンネリング手技に従い、末梢と中枢の切開の間に皮下トンネルを作製します。
4. 作製した皮下トンネルにアクセス人工血管を留置します。人工血管にねじれがないよう、注意してください。

プレカーブ仕様人工血管はカーブした留置には適しません。

プレカーブ仕様人工血管（図4）
1. 移植部位の中枢側および末梢側に、二箇所の切開を作製します。
2. 動脈および静脈の吻合部位を露出します。
3. 通常のトンネリング手技に従い、末梢と中枢の切開の間に皮下トンネルを作製します。
4. 作製した皮下トンネルにアクセス人工血管の一方向の側を留置します。人工血管にねじれがないよう、注意してください。
5. 人工血管の反対側も上記3および4に従って留置します。
6. 人工血管がキックすることなくスムーズなループを描くように、人工血管中央のX印がカーブの頂点となるよう留置してください。

プレカーブ仕様の人工血管はストレート形状の留置には適しません。キック防止にはプレカーブ仕様が適しています。

吻合の準備
・人工血管の留置が完了したら、血管吻合を行います。
・人工血管の配置がスムーズになるよう、断端を斜めに形成します。
・一糸(one suture)または二糸(two suture)縫合にて吻合します。もう一方の端部も同様に断端形成および縫合してください。

注：本人工血管は全長にわたってどこでも切断・吻合することが可能ですが、穿刺部では針を通す際の抵抗が大きく感じる場合があります。

縫合
・テーパー丸針と非吸収性の5.0または6.0モノフィラメント縫合糸を用い、人工血管の断端から適切な縫い方を確保することにより最適な縫合を行うことができます。
・縫合部からの出血を最小限とするために、縫合糸は人工血管に対して90°の角度で引張ってください。

外科的修復
・アクセス人工血管を、人工血管による部分置換術にて処置する場合は、留置されている人工血管の内径に適した人工血管を使用してください。
・本人工血管は、個々の患者の状態に応じて端側吻合と端端吻合いずれの方法でも吻合することが可能です。
・アクセス人工血管を、人工血管による部分置換術によって処置する場合には、穿刺部のみを使用してください。穿刺部は図2に示す通り二本線の表示がありますので容易に識別可能です。穿刺部を使用しないと、製品本来のセルフシール機能を発揮できない恐れがあります。

製品の性能を最大限に発揮するため、バスクテック社では人工血管部分置換術を端側吻合ではなく端端吻合で行うことを推奨します。

穿刺
穿刺針の針孔を上向きにし、45°の角度で人工血管壁を貫通するまで挿入してください。
穿刺の際に人工血管の反対側を刺通しないよう注意してください。

最適な穿刺のために：
・場所を変えながら穿刺してください。同一箇所を繰り返し穿刺すると、人工血管壁を損傷させ、血腫または仮性動脈瘤形成に至る恐れがあります。皮下の人工血管の長さ方向に沿って等間隔に穿刺してください。
・中枢および末梢側の吻合部から2.5cm
（1インチ）以内には穿刺しないでください。図2に示すように、吻合部を形成する際には二本線が印字された穿刺部長さを最大限確保してください。
・感染リスクを最小限にするため、無菌操作の手技に厳格に従ってください。
・感染、出血、腫脹、浮腫あるいは血腫のいずれかの兆候が認められる場合、または十分な“スリル”が確認できない場合には穿刺しないでください。

抜針後は、人工血管を閉塞させないように軽く指で圧迫し、早期の止血を促進してください。長時間にわたる圧迫や止血クランプの使用は、血栓形成を生じ、人工血管の血流が抑制される恐れがあります。

滅菌
バスクテック社製アクセス人工血管はエチレンオキサイド滅菌済みです。再滅菌することではできません。内側と外側のパウチのいずれにも損傷がないことを確認してください。パウチが損傷すると製品の無菌性が損なわれます。包材に損傷が認められた場合、製品は使用せずに直ちに販売元に返品してください。

包装
内側のトレーのみ、無菌領域への持ち込みが可能です。

追加ラベル
本品のトラッキング用途で患者記録に記載できるよう、追加ラベルが同梱されています。

追加情報
ePTFE製品を260°C (500 °F) 以上に加熱しないでください。PTFEは高温で分解し、有害成分を発生します。

文献
1. 社内資料

Tyvek®はDu Pontの登録商標です。
Česky
Návod k použití

Popis
Řada cévních štěpů Vascutek Ltd. se vyrábí z ePTFE (expandovaného polytetrafluoretylenu), a to jak v rovné tak v zahnuté verzi. Cévní štěp je dvojitá, netkaný štěp tak, jak je zobrazeno na obrázku 1.

Cévní štěp má dvě odlišné části, jedna část je určena na tvorbu anastomózy a k přišití k přirozené cévě, druhá část je určena na kanylie za účelem přístupu do cévy při hemodialýze tak, jak je zobrazeno na obrázku 2. Tyto oblasti jsou na štěpu zřetelně vyznačeny.

Zahnutý štěp má vyznačený křížek označující vrchol zakřivení.

Indikace
Cévní štěp Vascutek Ltd. Se používá jako podkožní arteriovenózní kanál pro přístup krve. Cévní štěp lze propíchnout pro vytvoření přístupu do cévy do 24 hodin po implantaci za předpoklad, že se neprojeví žádné kontraindikace, tj. že se neobjeví známky infekce, krvácení, otoku, edému nebo za přítomnosti silného "třesení".

POZNÁMKA: Při předčasném přístupu může dojít k okluzi a nutnosti opakované intervence 1.

Kontraindikace
1. Tyto štěpy mohou implantovat pouze cévní chirurgové, kteří mají zkušenosti se speciálními technikami, které si tyto lékařské pomůcky vyžadují.
2. Tyto protézy by neměly být implantovány pacientům, kteří jsou senzitivní na ePTFE.

Varování
1. Při odstraňování embolu nebo při použití balónkových angioplastových katétrů uvnitř lumenu štěpu, musí velikost nafouknutého balónku odpovídat přesně vnitřnímu průměru štěpu. Nedodržení správného řezu nebo přílišně nafouknutí balónku by mohlo zapříčinit prasknutí štěpu nebo balónku.
2. Cévní štěp se vyznačuje určitou podélnou elasticitou. Přílišný tlak na protézy může snížit účinnost, ale mírný tlak je nutný.
3. Zkratky dostatečné délky štěpu, aby nedocházelo k napětí na anastomóze. Při stanovení správné délky implantovaného štěpu musí být brána v úvahu hmotnost pacienta a případné extrémní polohy těla, aby nedocházelo k napětí na anastomóze. Nedodržení těchto aspektů by mohlo vést k prasknutí anastomózy, což může vést k masivnímu krvácení, ztrátě funkčnosti, popřípadě možné amputací končetiny a v nejhorším případě k úmrtí.
4. Pokud dojde k propíchnutí štěpu v nekanylační oblasti (Obrázek 2), bude se štěp chovat jako standardní ePTFE.

5. TROMBEKTOMIE
Pokud by nastala pooperační okluze, je možné cévní štěp odstranit následujícím způsobem:
• Postupujte podle pokynů výrobce katétru týkající se velikosti, výběru a nahuštění balónku, přičemž velikost balónku musí odpovídat vnitřnímu průměru štěpu. Přehuštění nebo nadměrný tah mohou štěp rozšířit nebo poškodit.
• Pokud používáte podélný řez, umístěte pojistné stehy na každém konci řezu a to před zařazením embolektomického katétru.
• Pokud používáte příčný řez, nejsou potřeba žádné pojistné stehy a horizontální výztužný steh pomůže uzavření.

Upozornění
1. NEPROPÍRAT KRVÍ Předsrážení není požadováno.
2. NEPOUŽÍVAT PO STANOVENÉM DATU EXPIRACE.
3. NESTERILIZOVAT OPANKOVANÉ. POUZE K JEDNORÁZOVÉMU POUŽITÍ. Nepoužívejte opakováně, neuvádějte do znovupoužitelného stavu a nesterilizujte. Opakováně používejte, přepracovávejte nebo opakovaně sterilizujte a nesprávně sterilizované protože může poškodit strukturální integritu drátovníkového prostředku a buď způsobit infekci pacienta nebo přenos infekce, mimo jiné včetně přenosu infekčního onemocnění z jednoho pacienta na druhého. Konstelace prostředku může poškodit anastomózu a v některých případech může vést k omezení fyzické aktivity pacienta.

4. Svorkování může poškodit jakoukoliv cévní protézu. Měly by se používatatraumatické svorky, ideálně s měkkými čelistmi a s minimálním použitím síly.
5. Skladujte na suchém a čistém místě při teplotě od 0°C (32°F) do 50°C (122°F).

6. Potencionální komplikace, které mohou nastat při jakémkoliv chirurgickém postupu, jehož součástí je cévní protéza, obsahují, ale nejsou omezeny na: aneuryzmus, anastomotickou disrupci nebo roztrhnutí linie stehu a/nebo hostitelské cévy, embolické příhody, infekce, krvácení, okluzi, stenózu, trombózu, zauzlení/stlačení, opuchnutí implantované končetiny, tvorbu hematomu nebo pseudoaneuryzm, syndrom steal a/nebo erozi kůže.

8. Rovné štěpy nejsou určeny k umístění do zakřivené cévy.

9. Zahnuté štěpy nejsou určeny k umístění do přímé cévy.

Operační technika

Implantacní postup a tipy

Všeobecné

- **Pro implantování cévního štěpu není vyžadována žádná speciální technika.**
- **Štěpy se implantují stejným způsobem jako konvenční štěpy ePTFE.**
- **Zvolte si tunelovač s kuličkovou špičkou vhodné velikosti tak, aby štěp byl smykově uložen.**
- **Použijte standardní tunelovací techniku a instrumentaci k umístění štěpu mezi tepnové a žílové anastomotické místo.**
- **Vždy vytvářejte tunely ve vhodné hloubce, které zajistí snadnou vizualizaci a palpaci cévního štěpu.**

Konfigurace rovného štěpu (Obrázek 3)

1. **Provedte dva (2) řezy pro proximální a distální vstup do místa implantátu.**
2. **Odkryjte místo pro tepnovou a žilovou anastomózu.**
3. **Pomocí své standardní tunelovací techniky vytvořte podkožní tunel mezi distálním a proximálním řezem.**
4. **Umístěte štěp do cévy tohoto tunelu. Dávejte pozor, aby se štěp nezkroutil.**

ROVNÉ ŠTĚPY NEJSOU URČENY K IMPLANTACI DO ZAKŘIVENÝCH ČEV

Konfigurace zakřiveného štěpu (Obrázek 4)

1. **Proveďte dva (2) řezy pro proximální a distální vstup do místa implantátu.**
2. **Odkryjte místo pro tepnovou a žilovou anastomózu.**
3. **Pomocí své standardní tunelovací techniky vytvořte podkožní tunel mezi distálním a proximálním řezem.**
4. **Umístěte štěp do cévy tohoto tunelu. Dávejte pozor, aby se štěp nezkroutil.**

ZAKŘIVENÉ ŠTĚPY NEJSOU URČENY K IMPLANTACI DO ROVNÝCH KONFIGURACÍ. ZAKŘIVENÉ ŠTĚPY JSOU LEPŠÍ JAKO PREVENCÉ ZAUZLENÍ.

Anastomotická příprava

- **Po správném umístění štěpu je štěp připraven na anastomózu do cévy.**
- **Konec štěpu je dobré zešikmit, aby se zajistilo jeho snadné uložení.**
- **Anastomózu lze provést pomocí jedno nebo dvoustěhové techniky.**
- **Druhý konec štěpu by se měl přístřihnout a anastomózovat podobným způsobem.**

Poznámka: Štěp lze održízout nebo přišít podél celé dělí, ale kanylační oblast může vytvářet větší odpor při průchodu jehly.

Stehování

- **Nejlepších výsledků dosáhnete použitím špičaté, neřezací jehly s neabsorbovatelným monofilovým 2,0 nebo 6,0 švem stehovaným ve vhodné vzdálenosti od okraje štěpu.**
- **Suturu vyhrňte do úhlu 90° ke štěpu, tak bude minimalizováno krvácení v linii sutury.**

Chirurgická revize

- **Pokud by bylo potřeba opravit štěp chirurgickým zákrokem pomocí bypassového štěpu, vyberte si, prosím, štěp, jehož vnitřní průměr odpovídá již naimplantovanému štěpu.**
- **Štěp lze přišít buď koncem k boku nebo koncem ke konci, podle potřeby konkrétního pacienta.**
- **Pokud by bylo potřeba opravit cévní štěp chirurgickým zákrokem pomoc bypassového štěpu, používejte při tomto postupu pouze kanylační část. Kanylační část lze lehko rozpoznat podle dvojitě čáry tak, jak je uvedeno na obrázku 2. Nedodržení tohoto postupu může způsobit, že se štěp správně neuzavře.**

Pro zabezpečení nejlepšího stavu doporučuje
Vascutek při opravném štěpování použití anastomózy konec ke konci a nikoliv koncem k boku.

Kanylace
Vložte jehlu pro přístup krve v úhlu 45° směrem nahoru, dokud nevniknete do štěpu.
Během šití je třeba dávat pozor, aby nebyla propichnuta opačná strana štěpu.

Nejlepších výsledků dosáhnete následujícím způsobem:
- Střídejte místa kanylace. Opakovaná kanylace ve stejném místě může vést k poškození stěny štěpu a/nebo k tvorbě hematomu nebo pseudoaneuryzem. Místa propichnutí jehlou by měla být pravidelně rozmístěná podél podkožního štěpu.
- Nekanylujte ve vzdálenosti menší než 2,5 cm od proximální nebo distální anastomózy. Při tvarování anastomózy maximalizujte velikost oblasti vyznačené dvojitou čárou, která je dostupná pro kanylaci tak, jak je znázorněno na obrázku 2.
- Za účelem minimalizace infekce se vyžaduje přísné dodržování aseptické techniky.
- Nekanylujte v případech, když se objeví známky infekce, krvácení, otoku, edému, hematomu nebo za přítomnosti silného “třesení”.

Hned po vytažení jehly vyvíjte jemný, neoklusivní bodový tlak, abyste stlačili místo kanylace a napomohli rychlé hemostáze. Delší tlak nebo použití trvalých svorek může způsobit vytvoření sraženiny, která bude bránit průtoku krve přes štěp.

Sterilizace
Cévní štěpy Vascutek Ltd. jsou sterilizované v etylén oxidu, dodávají se sterilní a není nutné je sterilizovat. Zatavení středního a vnitřního obalu musí být neporušené. Jakékoliv poškození těchto obalů způsobí nesterilnost protézy. V případě porušení původního obalu výrobek nelze použít a měl by být okamžitě vrácen dodavateli.

Balení
DO STERILNÍ OBLASTI LZE ZAVÁDĚT POUZE NEJVNITŘNĚJŠÍ BLOK.

Další štítky
Na obalu jsou další štítky pro vypisování záznamů o pacientovi, určené ke sledování tohoto zařízení.

Další informace
Nevystavujte výrobky z ePTFE teplotám vyšším než 260 °C (500 °F). PTFE se při zvýšených teplotách rozkládá a produkce totoxické rozkladné látky.

Reference
1. Údaje jsou zaregistrovány.
Tyvek® Du Pont je registrovaná ochranná známka.
Leírás
Ezen Vascutek ér shunt graftok ePTFE-ből (expandált polietetrafluoroetilén) készültek, mind egyenes mind előhajlított (u alakban preformált) változatban.

Az ér shunt graft egy kettős rétegből álló graft, amint az 1 ábra mutatja.

Az ér shunt graftnak két zóna van. Az egyik az anasztomózis kialakításra és az érhez való hozzáfára, a másik hemodialízis céljából történő vérnyerést biztosító pungálásra van tervezve, amint a 2-es ábra mutatja. Ezek világosan fel vannak tüntetve a grafton.

Az előgörbített (u alakban preformált) grafton egy kereszt is fel van tüntetve, amely a görbület csúcsát mutatja.

Javallatok
A Vascutek ér shunt graft bőr alatti arteriovenózus vezetékként való felhasználásra javallt, egy vérnyerési út biztosítása érdekében.

Az ér shunt graft átszúrható vérnyerés céljából 24 órával a beültetés után, ha nincsenek ellensjavallatok vagy nincs fertőzésre, vérzésre, duzzanatra, ödémára, hematómára utaló jel.

MEGJEGYZÉS: A korai használat elzáródást okozhat és reintervenciót tehet szükségessé 1.

Ellensjavallatok
1. A graftot csak azon érsebészek ültethetik be akik tapasztalattal rendelkeznek ezen orvosi eszközök beültetéséhez szükséges különleges eljárások területén.
2. Ezeket a protéziseket nem szabad olyan betegeknél alkalmazni, akik érzékenyek az ePTFE-re.

Figyelmeztetések
1. Ha a graft lumenében embolektómiás vagy angioplasztikai katétert használ, akkor a felfújt ballon méretének pontosan igazodnia kell a graft belső átmérőjéhez. Ha a katéter mérete nem egyezik pontosan vagy a ballont túlságosan felfújtja, akkor ezek a graft vagy a ballon ruptúrájához vezethetnek.
2. Az vérnyerési graft bizonyos fokú hosszanti rugalmasságot mutat. A protézis erős feszülését kerülni kell, de az enyhe feszülés alapvető fontosságú.
3. Vágha a graftot elég hosszúra ahhoz, hogy az anasztomózisban ne keletkezzen túlzott feszülés. A beteg testkövei és a vélhető melléktűk mozgásával végzésézt felelősnek kell venni a beültetett graft hosszának megválasztásánál, ellenkező esetben túlzott feszülés keletkezhet az anasztomózisban. Ha ezen szempontokat nem veszi figyelembe, akkor az anasztomózis szétszakadhat, ami vérzéshez, funkciókéveshez, esetleges végtagamputációhoz ill. legsúlyosabb esetben a beteg halálához vezethet.

4. Amikor a graftot átszúrják a nem kanülálási területen (2-es ábra) hasonlóan fog viselkedni mint egy standard ePTFE.

5. TROMBECTOMIA
Műtét utáni elzáródás esetén az ér shunt graft lumenénének szabadadára tetele a következőképpen végezhető el:
• Kövesse a katéter gyártójának utasításait a méretre, kiválasztásra és ballon felfújásra, valamint a ballon méretének a graft belső átmérőjéhez való igazítására vonatkozóan.
• Túlzott felfújás vagy húzás kitágíthatja vagy károsíthatja a graftot.
• Hosszanti Metszés alkalmazása esetén a metszés mindkét végére helyezzen rögzítő varratokat az embolektomias katéter bevezetése előtt.
• Harántmetszés használata esetén nincs szükség rögzítő varratokra és a zárást elősegíti egy vízszintes mélyvarrat technika alkalmazása.

Elővigyázatossági intézkedések
1. NEM SZABAD PREKLOTTINGOLNI / ELŐALVASZTANI. Nincs szükség előalvasztásra.
2. NE HASZNÁLJA A FELTÜNTETETT LEJÁRATI NAP UTÁN.
3. TILOS ÚJRASTERILIZÁLNI. KIZÁRÓLAG EGYSZERI HASZNÁLATRA. Titos ismételten felhasználni, felújítani vagy újrafelhasználni. Az ímételt használat, a felújítás vagy az újrafelhasználás veszélyezteti az eszköz szerkezeti egységét és/vagy egészsében károsíthatja azt, ami következményesen a beteg egészségromlásához vagy halálához vezethet. Az ímételt használat, a felújítás vagy újrafelhasználás az eszköz szennyeződésének kockázatátval jár és/vagy közvetlen fertőzésekhez vezethet, vagy keresztfertőzést okozhat, többek között a fertőző betegségek egyik beteg gról a...
másikra történő átvitelével. A szennyeződés a végfelhasználó betegnél szövődményhez, egészségromláshez vagy halálához vezethet.

4. Érlelőfogó alkalmazása bármilyen érprotézist károsíthat. Atraumatikus, ideálisan puha fogóvégekkel rendelkező érlelőfogó használható, minimális erőhatás alkalmazása mellett.

5. 0°C-nál nem alacsonyabb és 50°C-nál nem magasabb hőmérsékletű tiszta és száraz helyen kell tárolni.

6. Bármilyen érprotézist használó sebészeti eljárás lehetséges szövődményei a következők lehetnek, a teljesesség igénye nélkül aneurizma; anasztomotikus szétválás vagy a varrat és/ vagy a befogadó ér szakadása; embölibás események; fertőzés; vérzés; elzáródás; szűkület; hurokképződés/kompreszió; a végtag duzzanata; hematómák vagy pszeudoaneurizmák kialakulása; steal szindróma és/vagy bőr erózió.

7. Ne nedvesítse a graftot. Olaj, alkohol, vizes oldatok vagy ezen folyadékok túlnyomás esetén befolyásolják a graft anyagának hidrofób tulajdonságát, és fokozott szeromák kötődését okozhatnak.

8. Az egyenes graftok nem hajlíttott helyzetben való behelyezésre voltak tervezve.

Műtéti technika
Beültetési technika és tanácsok

Általánosságok

• Az ér shunt graft beültetése nem igényel különleges technikát.
• A graftot egy hagyományos ePTFE grafthoz hasonlóan kell beültetni.
• Válasszon egy lekerekített hegyű tüt, amely megfelelő méretű ahhoz, hogy biztosítsa a graft megfelelő illeszkedését.
• Használjon standard alagútképző technikát és eszközöket és helyezze a graftot artériás és vénás anasztomotikus területek közé.
• Az alagutakat mindig a megfelelő mélységben alakítsa ki, hogy az ér shunt graftot könnyen lehessen észrevenni és tapintani.

Egyenes graft (3 ábra)

1. Ejtsen két (2) metszést a beültetési terület proximális és disztilás belépési pontjainak megfelelően.
2. Tárja fel mind az artériás mind a vénás anasztomózis helyeit.
3. A standard alagútképző technika használatával alakítsa ki egy bőr alatti alagutat a disztalás és proximális metszések között.
4. Helyezze az ér shunt graftot ebbe az alagútba vigyázva, hogy a graft ne görbüljön meg.

AZ EGYENES GRAFTOK NEM HAJLÍTOTT HELYZETBEN VALÓ BEHELYEZÉSRE VOLTAK TERVEZVE.

Preformált graft (4 ábra)

1. Ejtsen két (2) metszést a beültetési terület proximális és disztilás belépési pontjainak megfelelően.
2. Tárja fel mind az artériás mind a vénás anasztomózis helyeit.
3. A standard alagútképző technika használatával alakítsa ki egy bőr alatti alagutat a disztalás és proximális metszések között.
4. Helyezze az ér shunt graft első oldalát ebbe az alagútba vigyázva, hogy a graft ne csavarodjon meg.
5. Ismételje meg a 3-4 lépést a graft második oldala esetében.
6. Helyezze a graftot úgy, hogy a központi kereszt a csúcson helyezkedjen el és a graft egy sima hurkot képezzen további hurokképződés nélkül.

A PREFORMÁLT GRAFTOK NEM EGYENES HELYZETBEN VALÓ BEHELYEZÉSRE VOLTAK TERVEZVE. AZ ELŐFORMÁZOTT ALAK A HUROKKÉPZŐDÉS ELKERÜLÉSE MIATT VAN ELŐNYBEN RÉSZESÍTVE.

Az anasztomózis elkészítése

• A graft helyes behelyezése után készen áll az érrel való anasztomózis létrehozására.
• A graft vége rézsútos kell legyen, hogy lehetővé tegye a graft akadálymentes elhelyezkedését.
• Anasztomózis elkészíthető egy-egy, vagy kétvarratos technika használatával. A graft másik végét hasonló módon le kell vágni és kialakítani az anasztomózist.

Megjegyzés: A graft átvágható és/vagy varrható a teljes hossza mentén, azonban a kanülációs része nagyobb ellenállást tanúsíthat a tű áthaladása ellenében.

Varrás

• A legjobb eredmények egy nem-vágó, kúpos tű, nem felszívódó polipropilén vagy PTFE monofilament 5.0 vagy 6.0 varrat, a graft szélétől megfelelő távolsgára ejtett öltések használatával érhetők el.

• A varratsorból eredő vérzés csökkentése érdekében a fonatal a graftra merőlegesen húzzuk meg.
Műtéti revízió

• Ha szükségessé válik az ér shunt graft helyreállítása egy sebészeti közbeiktatott bypass graft használatával, kérjük válasszon egy olyan graftot, melynek belső átmérője illeszkedik a beültetett graft belső átmérőjével.

• A graftot vég-az-oldalhoz vagy vég-a-véghez varrhatja, a páciensen történő beavatkozás lehetőségének megfelelően.

• Ha szükségessé válik az ér shunt graft helyreállítása egy sebészeti közbeiktatott bypass graft használatával csak a kanülációs rész használja ezen eljárás elvégzésére. A kanülációs rész könnyen azonosítható a duplán nyomtatott vonal alapján, mint a 2-es ábra is mutatja. Ezen eljárás követésének elmulasztása a graft önzárásra vonatkozó tervezési kritériumainak való meg nem felelését vonhatja maga után.

A jobb teljesítmény érdekében a Vascutek egy vég-a-véghez és nem vég-az-oldalhoz anasztomózist javasol a revíziós graft esetében.

Kanüláció

Szúrja be a tűt 45°-os szögben, a hegyének a ferde metszésével felfele, amíg átszúrja a graftot. Varrás közben ügyeljen rá, hogy meg ne szúrja a graft átellenes oldalát.

A legjobb eredmények elérése érdekében:

• Váltogassa a kanülációs helyeket. Azonos helyen végzett ismételt kanüláció a graft falának károsodásához és/vagy hematóma vagy pszeudoaneurizma kialakulásához vezethet. A tűszúrások egyenlő távolságra kell felsorakozzanak a graft bőralatti teljes hosszában.

• Ne kanüláljon egy inch (2,5 cm) távolságnál közelebb a proximális vagy disztális anasztomózishoz. Az anasztomózis elkészítésekor növelje a lehető legnagyobbra a kanülálásnak megfelelő dupla vonalas területet, amint a 2-es ábra mutatja.

• A fertőzés veszélyének minimalizálása érdekében az aszeptikus eljárás pontos követése szükséges.

• Ne kanüláljon ha bármilyen fertőzésre, vérzésre, ődémára, hematómára utaló jelet tapasztal.

A tű visszahúzása után alkalmazzon egy enyhe, nem elzáró ujjnyomást, hogy összenyomja a kanülációs területet és elősegítse a gyors vérzéscsillapítást.

Hosszantartó összenyomás vagy érleszorítók használata vérrög kialakulásához vezethet, megakadályozva a vér grafton való átáramlását.

Sterilizálás

A Vascutek ér shunt graftokat etilén oxiddal sterilizálják, sterilen szállítják le és nem sterilizálhatók újra. Mind a køzbenső, mind a belső tasakokon lévő tömítésnek érintetlennek kell lenni. Ha a tasakok sérülnek, a protézis elveszti sterilizálását. Ha az elsődleges csomagolás sérül meg, akkor a terméket nem szabad felhasználni, és azonnal vissza kell küldeni a szállítónak.

Csomagolás

A STERIL MEZŐBE CSAK A LEGBELSŐ TÁLCÁT SZABAD BEVINNI.

Járilékos címek

A csomagolásban járilékos címek találhatók a páciens nyilvántartása számára, hogy lehetővé tegyék ezen eszköz nyomonkövetését.

További információ

Tilos az ePTFE termékeket 260 °C feletti hőmérsékletnek kitenni. A PTFE magas hőmérsékleten elbomlik, és mérgező bomlástermékek keletkeznek.

Szakirodalom

Tyvek® Du Pont Registered Trademark.
Opis
Należące do tej grupy protezy, firmy Vascutek Ltd. są produkowane z ePTFE (rozprężonego politetrafluoroetylenu).

Proteza dla dostępu naczyniowego jest zbudowana ze złączonych ze sobą podwójna warstw, jak to jest pokazane na Rysunku 1.

Proteza dla dostępu naczyniowego posiada dwie zróżnicowane strefy, z których jedna przeznaczona jest do wytworzenia zespolenia i zeszycia z naczyniem własnym pacjenta, a druga przeznaczona jest do kaniulacji w celu uzyskania dostępu naczyniowego do hemodializy jak to jest uwidocznione na Rysunku 2. Oba obszary są wyraźnie oznaczone na protezie.

Ponadto proteza, której można nadać zakrzywiony kształt posiada krzyżyk wskazujący wierzchołek jej krzywizny.

Wskazania
Proteza naczyniowa firmy Vascutek Ltd., dla dostępu naczyniowego, stanowi podskórny przewód tętniczo-żylny, umożliwiający dostęp do układu krwionośnego.

Protezę dostępu naczyniowego można nakłuć w celu uzyskania dostępu do układu krwionośnego w ciągu 24 godzin po jej wszczepieniu, o ile nie stwierdza się przeciwskazań jak np.: jakiekolwiek objawy zakażenia, krwawienie, obrzmienie, obrzęk, krwiak lub brak wyraźnego szmeru naczyniowego.

UWAGA: Wczesny dostęp może być związany z niedrożnością lub interwencją powtórną 1.

Przeciwwskazania
1. Protezy naczyniowe opisywanego typu powinny być wszczepiane wyłącznie przez chirurów naczyniowych, mających doświadczenie w technice chirurgicznej dla tego typu zabiegów.

2. Protez tych nie należy wszczepiać pacjentom wykazującym wrażliwość na ePTFE.

Ostrzeżenia
1. Używając w świetle protezy cewników do embolektomii lub angioplastyki balonikowej, należy dokładnie dopasować rozmiar napełnionego balonika do wewnętrznej średnicy protezy. Nieprawidłowe dobranie rozmiaru cewnika lub nadmiernie napełnienie balonika może spowodować rozerwanie protezy bądź balonika.

3. Należy rozciąć protezę na wystarczającej długości, tak aby być pewnym, że na zespoleniu nie występują naprężenia. Dobierając długość wszczepianej protezy, należy wziąć pod uwagę masę ciała pacjenta i zakres ruchów, jakie może wykonywać, gdyż w przeciwnym razie na zespolenie mogą działać naprężenia. Niewzględnienie powyższych czynników może doprowadzić do rozerwania zespolenia, a w konsekwencji nasilonego krwawienia, zaniku czynności lub zagojenia amputacją kończyny, a w najgorszym przypadku — zgonu.

4. W przypadku nakłucia protezy w miejscu do tego nieprzeznacznym (Rysunek 2), będzie się ona zachowywać tak, jak standardowa proteza wykonana z ePTFE.

5. TROMBEKTOMIA
W przypadku pojawienia się pooperacyjnego zamknięcia światła naczynia, należy protezę udrożnić w następujący sposób:
• Przestrzegać wskazówek producenta cewnika, dotyczących rozmiaru, doboru balonu oraz jego napełnienia, dla dopasowania do wewnętrznej średnicy protezy. Przepelnienie balonu lub zbyt silne pociąganie może spowodować rozszerzenie, albo uszkodzenie protezy naczyniowej.
• W przypadku cięcia podłużnego założyć szwy stabilizacyjne na każdym końcu nacięcia przed wprowadzeniem cewnika do embolektomii.
• W przypadku cięcia poprzecznego nie jest konieczne założenie szwów stabilizacyjnych; do zamknięcia wystarcza poziomy szew materacowy.

Środki ostrożności
1. NIE WYKRZEPIAĆ. Wykrzepianie wstępnne nie jest wymagane.
2. NIE UŻYWAĆ PO UPŁYWIE PODANEGO TERMINU WAŻNOŚCI.
3. NIE WYJAŁAWIAĆ POWTORZNIE. TYLKO DO UŻYTKU JEDNORAZOWEGO. Nie używać powtórnie, przetwarzać lub wyjaławić powtórnie. Powtórne użycie, przetwarzanie
lub wyjaławianie powtórne może wpłynąć
na strukturalną integralność urządzenia i/lub
prowadzić do jego uszkodzenia, co może mieć
wzajemny wpływ na zdrowie pacjenta lub doprowadzić do
zgonu pacjenta. Powtórne użycie, przetwarzanie lub
wyjaśnianie powtórne może także spowodować ryzyko zakażenia urządzenia i/lub
prowadzić do jego uszkodzenia, co może mieć
wzajemny wpływ na zdrowie pacjenta lub doprowadzić do
zgonu pacjenta. Powtórne użycie, przetwarzanie lub
wyjaśnianie powtórne może także
spowodować ryzyko zakażenia urządzenia i/lub
spowodować infekcję organizmu pacjenta lub
zakażenie krzyżowe, włączając w to
przeniesienie zakażenia z jednego pacjenta
na drugiego. Zanieczyszczenie urządzenia
może prowadzić do urazu, choroby lub śmierci
pacjenta – końcowego użytkownika.
4. Zaciskanie (klemowanie) może uszkodzić
dażę protezę naczyniową. Używać klemów
atraumatycznych o delikatnych branszach,
używając minimalnej siły.
5. Przechowywać w czystym suchym miejscu,
w temperaturze nie niższej niż 0°C(32°F) i nie
wyższej niż 50°C(122°F).
6. Do możliwych powikłań, które mogą zdarzyć
się podczas każdej procedury chirurgicznej z
użyciem protezy naczyniowej, należą (nie
wykluczając innych): tętniąc; rozerwanie
zespolenia lub rozdarcie w linii szwów
protezy i/lub naczynia własnego pacjenta;
epizody zatorowości; zakażenie; krwawienie;
zmęczenie; zaskoczenie; zagęszczenie
uciśnięci; obrzmienie operowanej kończyny;
powstanie krwiaka lub tętniaka rzekomego;
zespoły podkradania i/lub nadżerki skórne.
7. Unikać zamoczenia protezy. Kontakt protezy z
olejem, alkoholem, roztworami wodnymi lub
innymi płynami pod ciśnieniem, negatywnie
wpływa na właściwości hydrofobowe materiału
i może powodować nasilone gromadzenie się
płynu surowiczego.
8. Proste protezy naczyniowe nie są
przeznaczone do wszczepiania w postaci
zakrzywionej.
9. Zakrzywione protezy naczyniowe nie są
przeznaczone do wszczepiania w taki sposób,
że pozostaną w układzie prostym.

Technika operacyjna
Technika wszczepiania oraz dodatkowe
wskazówki
Główne założenia
• Implantacja protezy dla dostępu naczyniowego nie wymaga stosowania żadnej specjalnej
techniki.
• Proteza powinna być wszczepiona w taki sam
sposób jak konwencjonalna proteza ePTFE.
• Wybierz prowadnicę o odpowiednim rozmiarze
do wytwarzania kanału, aby być pewnym, że
proteza będzie dobrze dopasowana.
• Aby umieścić protezę w miejscu zespolenia
tętniczko-żylnego, skorzystaj ze standardowej
techniki oraz instrumentarium do wytwarzania
kału.
• Wytwórz kanał, zawsze na odpowiedniej
głębokości, umożliwiającej łatwe uwidocznienie
oraz palpację protezy dla dostępu
naczyniowego.

Konfiguracja protezy prostej (Rysunek 3) 1. Wykonaj dwa (2) nacięcia dla bliższego i
dalszego wejścia, w miejscu implantacji
2. Uwierzbini miejsce zespolenia tętniczego oraz żylnego.
3. Używając standardowej techniki tunelizacji,
uforuj podskórny tunel pomiędzy nacięciem
dalszym i bliższym.
4. Umieść protezę dla dostępu naczyniowego
wewnątrz wytworzonego kanału. Upewnij się, że
proteza nie uległa skręceniu.

PROSTE PROTEZY NACZYNIOWE NIE
SĄ PRZEZNACZONE DO WSZCZEPIANIA
W TAKI SPOSÓB, ŻE POZOSTANĄ W
KONFIGURACJI ZAKrzyWYJONEJ.

Konfiguracja protezy zakrzywionej (Rysunek 4)
1. Wykonaj dwa (2) nacięcia dla bliższego i
dalszego wejścia w miejscu implantacji.
2. Uwierzbini miejsca zespolenia żylnego oraz
tętniczego.
3. Używając standardowej techniki tunelizacji,
uforuj podskórny tunel pomiędzy nacięciem
dalszym i bliższym.
4. Umieść protezę dla dostępu naczyniowego
wewnątrz wytworzonego kanału. Upewnij się,
że proteza nie uległa skręceniu.
5. Powtórz etapy 3-4 dla drugiej części protezy.
6. Umieść protezę tak, aby upewnić się, że
centralny krzyżyk znajduje się na wierzchołku
protezy, a proteza tworzy regularną pętle, nie
tworząc zagęszczeń.

ZAKRZYWIONE PROTEZY NACZYNIOWE
NIE SĄ PRZEZNACZONE DO WSZCZEPIANIA
W KONFIGURACJI PROSTEJ. WZÓR
PROTEZY ZAKrzyWYJONEJ UMOŻLIWIA
UNIKNIECIE ZAGĘŚCIE PROTEZY.

Przygotowanie zespolenia
• Po prawidłowym umieszczeniu, proteza
jest gotowa do zespolenia z naczyniem
krwionośnym
• Koniec protezy powinien być uformowany ukośnie, aby uzyskać prawidłowe ułożenie protezy
• Zespolenie może zostać wykonane przy użyciu jednego lub dwóch rodzajów szycia chirurgicznego. Drugi koniec protezy powinien zostać odpowiednio przycięty i zespolony w podobny sposób.

Uwaga: Proteza może być przecinana i/lub zszywana na całej długości, jednak część przeznaczona do kaniulacji może stawiać większy opór podczas przebijania jej igłą chirurgiczną.

Szyście
Najlepsze wyniki uzyskuje się używając stożkowej, nietnącej igły z niewchłanialnym monofilamentowym szwem 5.0 lub 6.0, zakładanym w odpowiedniej odległości od brzegów protezy.

Aby zminimalizować krvawienie w linii szwu, należy przeciągać szew pod kątem 90° względem protezy.

Rewizja chirurgiczna
• W sytuacji gdy konieczna będzie rekonstrukcja protezy dla dostępu naczyniowego za pomocą interpozycyjnej protezy omijającej, proszę wybrać protezę o średnicy wewnętrznej odpowiadającej protezie pierwotnej.
• Protezę można wszywać zarówno koniec do boku, jak i koniec do końca, w zależności od potrzeb dla danego pacjenta.
• W sytuacji gdy konieczna będzie rekonstrukcja protezy dla dostępu naczyniowego za pomocą interpozycyjnej protezy omijającej, użyj wyłącznie części przeznaczonej do kaniulacji.

Część przeznaczoną do kaniulacji można łatwo zidentyfikować po nadrukowanej podwójnej linii jak to pokazano na Rysunku 2. Nieprzestrzeganie tego zalecenia może spowodować utratę właściwości samouszczelniających protezy.

Aby uzyskać najlepszy wynik, firma Vascutek zaleca stosowanie podczas rewizji chirurgicznej zespołów koniec do końca, a nie koniec do boku.

Kaniulacja
Umieść igłę kaniulacyjną pod kątem 45°, skośnie penetrując następnie światło protezy. Należy być ostrożnym aby nie przekłuć przeciwniej ściany protezy.

Aby osiągnąć najlepszy wynik:
• Zmieniaj miejsca nakłucia. Powtórna kaniulacja w tym samym miejscu może prowadzić do uszkodzenia ściany protezy i/lub powstania krwiaka lub tętniaka rzekomego. Miejsca wkłuc igły powinne być rozmieszczone wzdłuż całego, podskórnego przebiegu protezy.
• Nie należy kaniulować protezy w odległości mniejszej niż 2,5 cm (1 cal) od bliższego i dalszego końca zespolenia. Podczas modelowania zespolenia należy pamiętać, aby pozostawić jak najwięcej obszaru do kaniulacji oznaczonego podwójną linią (Rysunek 2).
• Aby zminimalizować ryzyko zakażenia, należy ściśle przestrzegać aseptyki.
• Nie należy przeprowadzać kaniulacji, gdy występują jakiekolwiek objawy zakażenia, krwawienia, obrzmienia, obrzęku, krwiaka lub w przypadku braku wyraźnego szmeru naczyniowego.

Po usunięciu igły należy delikatnie ucisnąć palcami miejsce kaniulacji tak, aby nie zamknąć światła naczynia lecz uzyskać szybką hemostazę. Przedłużony ucisk lub stosowanie stazy może doprowadzić do powstania skrzepu i ograniczenia przepływu krwi przez protezę.

Wyjałanianie

Opakowanie
TYLKO NAJBARDZIEJ WewnĘTRZNA TACA MOŻE ZOSTAĆ WProwaDzona W POLE JaŁOwe

Dodatkowe etykiety
Dodatkowe etykiety znajdują się w opakowaniu ; przeznaczone są do dołączenia do historii choroby w celu umożliwienia późniejszej identyfikacji protezy.

Dodatkowe informacje
Nie poddawać produktów ePTFE wyższym temperaturom niż 500° F (260°C). PTFE ulega rozkładowi w wyższych temperaturach z powstaniem tókscychch produktów w reakcji rozkładu.
Piśmiennictwo
1. Dane w aktach

Tyvek® jest zastrzeżonym znakiem towarowym firmy Du Pont.
Slovensky
Návod na použitie

Popis
Tento rad protéz pre prístup do cievy Vascutek Ltd. je vyrobený z ePTFE (expandovaný polytetrafluoroetylén), v rovnej aj vo vopred zakrivené formy.

Protéza pre prístup do cievy je dvojvrstvová netkaná protéza, ako to znázorňuje Obrázok 1.

Protéza pre prístup do cievy má dve odlišné zóny, jedna zóna je určená na tvorbu anastomózy a prišitia k prirodzenej cieve, druhá je určená na kanyláciu za účelom prístupu do cievy pri hemodialýze, ako je to znázornené na Obrázku 2. Na protéze sú zreteľne vyznačené.

Indikácie
Protéza pre prístup do cievy Vascutek Ltd. sa používa ako podkožný arteriovenózny kanál pre prístup ku krvi.

Protéza pre prístup do cievy sa môže prepichnúť na vytvorenie prístupu do cievy do 24 hodín po implantovaní za predpokladu, že nie sú prítomné žiadne kontraindikácie, t.j. ak sa neobjavili známky infekcie, krvácania, opúchania, edému, hematóm alebo za neprítomnosti silnej “triašky”.

POZNÁMKA: Včasný prístup môže súvisieť s oklúziou a opakovanou intervenciou1.

Kontraindikácie
1. Tieto protézy by mali implantovať cievni chirurgovia, ktorí majú skúsenosti so špeciálnymi technikami, ktoré s tieto lekárske pomôcky vyžadujú.
2. Tieto protézy nesmú byť implantované pacientom, ktorí majú preukázanú precitlivelosť na ePTFE.

Výstrahy
1. Pri embolektómii alebo perkutánej transluminálnej angioplastike v priebehu lúmenu štepu musí byť veľkosť nafúknutého balónu dôkladne prispôsobená vnútornému priemeru štepu. Nesprávna veľkosť katétra alebo väčšie nafúknutie balóna môže spôsobiť prasknutie štepu alebo balónu.
3. Dostatočne skrášte dĺžku štepu a preverte, či nie je žiadne napätie v anastomóze. Pri určovaní dĺžky implantovaného štepu musíme brať do úvahy telesnú schránku pacienta a pravdepodobné extrémné polohy, v opačnom prípade môže byť napínanie v anastomóze. Nedodržanie týchto aspektov môže spôsobiť prasknutie anastomózy, výsledkom čoho je masívne krvácanie, strata funkcie alebo možná amputácia končatiny a v najhoršom prípade smrt'.
4. Keď je protéza prepichnutá v nekanyláčnych zónach (Obrázok 2), bude sa správať rovnakým spôsobom ako štandardný ePTFE.
5. TROMBEKTÓMIA
Ak by nastala popepračná oklúzia, protézu pre prístup do cievy je možné spriechodiť nasledovne:

POZNÁMKA: Včasný prístup môže súvisieť s oklúziou a opakovanou intervenciou1.

Preventívne opatrenia
1. NEPREPIERAŤ KRVOU Nevyžaduje prepieranie.
2. Nepoužívať po vyznačenom dátume expirácie.
3. NERESTERILIZUJTE. LEN NA JEDNO POUŽITIE. Opakovane nepoužívajte, nespracovávajte ani nesterilizujte. Opakovane použitie, spracovanie alebo resterilizácia by mohli narušiť štrukturálnu integritu prostriedku a/alebo viest’ k jeho poškodeniu, a tým k zhoršení zdravia alebo smrti pacientov. Opatovaným používaním, spracovávaním alebo resterilizáciou tiež môže vzniknúť riziko kontaminácie prostriedku a/alebo môže pacientovi spôsobiť infekciu alebo prenos infekcie, okrem iného aj prenos infekčného ochorenia z jedného pacienta na druhého. Kontaminácia prostriedku môže spôsobiť zranenie, chorobe alebo smrť pacienta ako koncového používateľa.'
5. Skladujte na čistom suchom mieste pri teplote od 0°C (32°F) do 50°C (122°F).
6. Potenciálne komplikácie, ktoré môžu nastať pri akejkoľvek chirurgickej procedúre, ktoréj súčasťou je cievna protéza, vedie na: aneurizmu; anastomotickú disrupciu alebo roztrhnutie línie stehu a/alebo hostitelskej cievy; embolické príhody; infekciu; krvácanie; oklúziu; stenózu; trombózu; zauzlenie/stlačenie; opúchanie implantovanej končatiny; tvorbu hematómov alebo pseudoaneuryzyiem; steal syndróm a/alebo eróziu kože.
7. Zabráňte navlhčeniu štepu. Kontakt s olejom, alkoholom, vodnými roztokmi alebo s niektorou z týchto tekutín pri tlakovaní môže poškodiť hydrofobické vlastnosti materiálu a môže zvýšiť riziko vytvorenia serómu.
8. Rovné protézy nie sú určené na umiestnenie do zakrivenej kontúry.
9. Vopred zakrivené protézy nie sú určené na umiestnenie do rovnej kontúry.

Operacná technika

Implantačná technika a tipsy

Všeobecné body

- Na implantovanie protézy pre prístup do cievy nie je potrebná žiadna špeciálna technika.
- Protéza by sa mala implantovať rovnakým spôsobom ako bežná ePTFE protéza.
- Zvolte si tunelovač s guličkovou špičkou vhodnej veľkosti na zabezpečenie toho, aby sa protéza volne pohybovala.
- Použite štandardnú tunelovaciu techniku a inštumentáciu na umiestnenie protézy medzi tepnové a žilové anastomotické miesto.
- Vždy vytvárajte tunely vo vhodnej hlbe, ktorá umožní ťažkú vizualizáciu a palpáciu protézy pre prístup do cievy.

Rovná kontúra protézy (Obrázok 3)

1. Urobte dva (2) rezy pre proximálny a distálny vstup do miesta implantátu.
2. Odhaľte mieste pre tepnovú a žilovú anastomózu.
3. Použitím svojej štandardnej tunelovej techniky vytvorete podkožný tunel medzi distálnym a proximálnym rezom.
4. Umiestnite protézu pre prístup do cievy do tohto tunela; dávajte pozor, aby sa protéza neskrútila.

ROVNÉ PROTÉZY NIE SÚ URČENÉ NA UMIESTNENIE DO ZAKRIVENÉJ KONTÚRY.

Vopred zakrivená kontúra protézy

(Obrázok 4)

1. Vykonajte dva (2) rezy pre proximálny a distálny vstup do miesta implantátu.
2. Odhaľte miesta pre tepnovú a žilovú anastomózu.
3. Použitím svojej štandardnej tunelovej techniky vytvorte podkožný tunel medzi distálnym a proximálnym rezom.
4. Umiestnite do tohto tunela prvú stenu protézy pre prístup do cievy; dávajte pozor, aby sa protéza neskrútila.
5. Zopakujte kroky 3-4 pre druhú stenu protézy.
6. Umiestnite protézu tak, aby ste zabezpečili umiestnenie stredového krížika vo vrchole a plynulú slučku protézy bez zauzlenia.

VOPRED ZAKRIVENÉ PROTÉZY NIE SÚ URČENÉ NA UMIESTNENIE DO ROVNEJ KONTÚRY. ZAKRIVENÝ TVAR ZABRAŇUJE, ABY NEDOŠLO K ZAUZLENIU PROTÉZY.

Príprava anastomózy

Anastomotická príprava

- Pri správnom umiestnení protézy, je táto pripravená na anastomózu do cievy.
- Koniec protézy by sa mal zošikmiť, aby bolo možné jej hladké uloženie.
- Anastomóza sa dá vykonávať pomocou jedno- alebo dvojvrstvovej sutúry. Druhý koniec protézy by sa mal pristrihnúť a anastomózovať podobným spôsobom.

Poznámka: Protéza sa môže odrezáť a/alebo prišiť pozdĺž celej svojej dĺžky, kanylačná časť však môže klásť väčší odpor pri prechode ihly.

Štite

- Najlepšie výsledky sa dosiahnu použitím zahtretnej, nerežúcej ihly s neabsorbovatelným monofilovým 5,0 alebo 6,0 stehom naloženým vo vhodnej vzdialenosti od okraju protézy.
- Kvôli minimalizácii krivácania v línii sutúry naložte sutúru do uhla 90° ku štepu.

Chirurgická revízia

- Ak by bolo potrebné revidovať protézu chirurgicky pomocou bypassovej protézy, vyberte si, prosím, protézu, ktorého vnútorný prímer sa zhoduje s priemerom protézy ktorá je implantovaná.
- Protéza sa môže prišívať buď koncom ku strane alebo koncom ku koncu, v závislosti na potrebách konkrétneho pacienta.
Ak treba revidovať protézu chirurgicky pomocou bypassovej protézy, pri tejto procedúre použite len kanylačnú časť. Kanylačná časť sa dá ľahko identifikovať podľa dvojitéj čiary, ako je to uvedené na Obrázkku 2. Ak tento postup nedodržíte, môžete spôsobiť to, že dôjde k porušeniu nepresiakavosti štepu.

Aby ste zabezpečili čo najlepší výsledok, pri revízi protézy Vascutek odporúčame anastomózu konca ku koncu a nie koncom ku strane.

Kanylácia

Vsúvajte ihlu pre prístup krvi v 45° uhle skosením smerom hore, kým nevniknete do protézy.

Pri punkcii dávajte pozor, aby ste neprepichli opačnú stranu štepu.

Ako dosiahnuť najlepšie výsledky:

- Striedajte miesta kanylácie. Opakovaná kanylácia v tej istej oblasti môže viest k poškodeniu steny protézy a/alebo k tvorbe hematómu alebo pseudoaneuryziem. Miesta prepichnutia ihlou by mali byť pravidelne rozmiestnené pozdĺž podkožného uloženia protézy.
- Nekanylujte menej ako 2,5 cm od proximálnej alebo distálnej anastomózy. Keď tvarujete anastomózu, maximalizujte veľkosť oblasti vyznačenej dvojitou čiarou dostupnú pre kanyláciu, ako je to znázornené na Obrázkku 2.
- Aby ste minimalizovali riziko infekcie, dodržiavajte prísne aseptickú techniku.
- Nekanylujte, ak sa objavili známky infekcie, krvácania, opúchania, edému, hematómu alebo za prítomnosti silnej “triašky”

Hneď ako vytiahnete ihlu, vyviňte jemný, neokluzívny bodový tlak, aby ste stlačili miesto kanylácie a napomohli rýchlej hemostáze. Dlhší tlak alebo použitie trvalých svoriek môže viest k tvorbe zrazenín, ktoré budú brániť prietoku krvi cez protézu.

Sterilizácia

Описание
Данные сосудистые имплантаты Vascutek Ltd, как прямой, так и изогнутый, изготовлены из ePTFE (пористого политетрафторэтилена).
Сосудистые имплантаты представляют собой двойная слойные связанные имплантаты (рис. 1).
В сосудистых имплантатах есть две специальные зоны, одна из которых предназначена для формирования анастомозов и соединения сосудов, а вторая для катетеризации в целях доступа для гемодиализа (рис. 2). Эти зоны на имплантате промаркированы. Отличительной чертой изогнутого имплантата является наличие изгиба, которое соответствует вершине кривой.

Показания
Сосудистые имплантаты Vascutek Ltd. предназначены для использования в качестве подкожных артериовенозных каналов, обеспечивающих поступление крови.
Отверстие для сосудистого доступа в имплантате можно сделать в течение 24 часов после имплантации, что обеспечивает отсутствие осложнений, например, при наличии признаков инфекции, кровотечения, опухолей, отека, гематомы или при отсутствии стойкого «возбуждения».

ПРИМЕЧАНИЕ: Ранний доступ может осложниться окклюзией и привести к повторному вмешательству1.

Противопоказания
1. Имплантаты должны устанавливаться исключительно специалистами в области хирургии сосудов, обладающими специальными знаниями и практическим опытом, которые требуются для работы с этими медицинскими устройствами.
2. Данные имплантаты не следует устанавливать пациентам с гиперчувствительностью к ePTFE.

Препдупреждения
1. При эмболэктомии или ангиопластической катетеризации в просвете трансплантата, размер раздутого баллона должен быть точно сверен с внутренним диаметром трансплантата. Использование катетера, размер которого определен неверно, или избыточное раздувание баллона, может привести к разрыву имплантата или баллона.
2. Сосудистые имплантаты отличаются угрюстью при растяжении. Протез может быть умеренно растянут, однако следует избегать его избыточного растяжения.
3. Обрежьте имплантат по длине таким образом, чтобы быть уверенными в отсутствии нагрузки на анастомоз. При определении длины имплантируемого протеза необходимо учитывать массу тела пациента, а также наиболее вероятное положение его конечностей, иначе можно подвергнуть анастомоз воздействию нагрузки. Недостаточное внимание к указаным аспектам может стать причиной разрыва анастомоза, что в свою очередь приведет к обильному кровотечению, утере функциональности или ампутации конечности, и, при наиболее неблагоприятном исходе, к смерти пациента.
4. Если имплантат установлен в некатетеризированные области (рис. 2), он будет функционировать как стандартный ePTFE.
5. ТРОМБЭКТОМИЯ
При возникновении послеоперационной окклюзии, удалить тромб из сосудистого имплантата можно следующим образом.
• При сопоставлении размера баллона и внутреннего диаметра имплантата следуйте инструкциям по выбору баллона, по определению его размера и по раздуванию баллона, предоставляемым производителем катетера. Чрезмерное раздувание или натяжение могут привести к расширению или повреждению имплантата.
• Если выполнен продольный надрез, перед вводом эмболэктомического катетера наложите фиксирующие швы в каждом конце надреза.
• Если выполнен поперечный надрез, в наложении фиксирующих швов нет необходимости; разрез следует сомкнуть с помощью горизонтального матрацного шва.
Меры предосторожности
1. **НЕ ЗАМАЧИВАТЬ.** Предварительное заполнение пор материала кровью не требуется.
2. **НЕ ИСПОЛЬЗОВАТЬ ПОСЛЕ ИСТЕЧЕНИЯ УКАЗАННОГО СРОКА ГОДНОСТИ.**
3. **ПОВТОРНАЯ СТЕРИЛИЗАЦИЯ ЗАПРЕЩЕНА. ТОЛЬКО ДЛЯ ОДНОКРАТНОГО ИСПОЛЬЗОВАНИЯ.**

Повторно не использовать, не обрабатывать и не стерилизовать. Повторное использование, повторная обработка и стерилизация могут нарушить структурную целостность устройства и/или привести к его отказу, что в свою очередь может вызвать ухудшение здоровья или гибель пациентов. Повторное использование, повторная обработка или повторная стерилизация также могут создать риск инфицирования устройства и/или инфицирования пациента или же перекрестного инфицирования, к чему относится, помимо прочего, распространение инфекционного(-ых) заболевания(-ий) от пациента к пациенту. Инфицирование устройства может стать причиной травмы, заболевания или смерти пациента, использующего устройство.

4. Применение зажимов может повредить любые сосудистые протезы. При использовании зажимов прикладываемая сила должна быть минимальной. Следует использовать атравматические зажимы, лучше с мягкими накладками на браншах.
5. Хранить в сухом месте при температуре от 0°C до 50°C.
6. В число возможных осложнений, которые могут возникнуть при любых операциях по сосудистому протезированию, входят (но не ограничиваются перечисленным): аневризма; повреждение анатомоза или разрыв линии шва и/или принимающего сосуда; эмболизация; инфекция; кровотечение; окклюзия; стеноз; тромбоз; перегиб/сжатие; опухание обработанной конечности; формирование гематомы; поражение кожи.
7. Избегайте увлажнения имплантата. Воздействие масел, спиртов, водных растворов или любых жидкостей ухудшает гидрофобные свойства материала и при повышенном давлении может привести к формированию серомы.
8. Прямые имплантаты не должны изгибаться при размещении.
9. Изогнутые имплантаты не должны выпрямляться при размещении.

Техника проведения операции
Техника имплантации и полезные советы

Основные моменты
- Для установки сосудистых имплантатов специальная техника не требуется.
- Имплантаты следует устанавливать аналогично стандартным ePTFE имплантатам.
- Выбирайте туннелизатор с пулевидным наконечником соответствующего размера, чтобы обеспечить скользящую посадку имплантата.
- Для размещения имплантата между артериальными и венозными участками анатомоза используйте стандартные инструменты и технику туннелизации.
- Всегда создавайте тоннель на глубине, на которой можно легко увидеть и пропальпировать сосудистый имплантат.

Прямой имплантат (рис. 3)
1. Сделайте проксимальный и дистальный входные надрезы участка имплантации.
2. Определите точки для артериального и венозного анастомоза.
3. С помощью стандартной техники туннелизации создайте подкожный тоннель между дистальным и проксимальным надрезами.
4. Поместите сосудистый имплантат в этот тоннель, предотвращая его перекручивание. ПРЯМЫЕ ИМПЛАНТАТЫ НЕ ДОЛЖНЫ ИЗГИБАТЬСЯ ПРИ РАЗМЕЩЕНИИ.

Изогнутый имплантат (рис. 4)
1. Сделайте проксимальный и дистальный входные надрезы участка имплантации.
2. Определите точки для артериального и венозного анастомоза.
3. С помощью стандартной техники туннелизации создайте подкожный тоннель между дистальным и проксимальным надрезами.
4. Поместите первый конец сосудистого имплантата в этот тоннель, предотвращая его перекручивание.
5. Повторите шаги 3–4 для второго конца имплантата.
6. Поместите имплантат таким образом,
чтобы центральный изгиб, расположенный вверху имплантата, создавал гладкую петлю без перегибов.

ИЗОГНУТЫЕ ИМПЛАНТАТЫ НЕ ДОЛЖНЫ ВЫПРЯМЛЯТЬСЯ ПРИ РАЗМЕЩЕНИИ. ПРИ УСТАНОВКЕ ИЗОГНУТЫХ ИМПЛАНТАТОВ СЛЕДУЕТ ИЗБЕГАТЬ ПЕРЕГИБОВ.

Подготовка анастомоза
• После надлежащего размещения имплантат готов к созданию анастомоза с сосудом.
• Чтобы имплантат располагался правильно, его конец должен быть скован.
• Анастомоз можно создать, используя технику одного или двух швов. Второй конец имплантата должен быть подготовлен к операции и соединен с сосудом аналогичным образом.

Примечание. Имплантат может быть разрезан и/или сшип на протяжении всей его длины, однако, на участке катетеризации игла встречает большее сопротивление.

Наложение швов
• Наилучший результат достигается при наложении швов на соответствующем расстоянии от края имплантата с использованием не режущей конусной иглы и неабсорбируемой хирургической мононити 5,0 или 6,0.
• Чтобы минимизировать кровотечение по линии шва, накладывайте шов под углом 90° к имплантату.

Повторное хирургическое вмешательство
• Если возникла необходимость в восстановлении сосудистого имплантата с помощью хирургической интерпозиции обходного сосудистого шунта, выберите шунт, внутренний диаметр которого совпадает с диметром уже размещенного протеза.
• Имплантат может пришиваться как концом к боковой части, так и концом к концу, в зависимости от требований конкретного клинического случая.
• Если возникла необходимость в восстановлении сосудистого имплантата с помощью хирургической интерпозиции обходного шунта, для этой процедуры используйте только участок катетеризации. Участок катетеризации можно легко определить по двойной линии, как указано на рис. 2. Неверное определение участка для катетеризации может привести к тому, что имплантат не будет соответствовать установленному критерiu самоуплотнения.

Для достижения наилучшего результата, компания Vascutek рекомендует для повторной операции использовать соединение «конец к концу», и не использовать соединение «конец к боковой части».

Катетеризация
Вводите иглу для доступа крови под углом 45° со скосом вверх, пока она не проникнет в имплантат.
Иглу следует вводить внимательно во избежание прокола противоположной стороны имплантата.

Для наилучших результатов:
• Меняйте точки катетеризации имплантата. Повторение катетеризации в одной и той же области может привести к повреждению стенки имплантата и/или формированию гематомы или псевдоаневризмы. Точки прокола должны равномерно распределяться вдоль подкожной части имплантата.
• Не проводите катетеризацию на расстоянии в пределах одного дюйма (2,5 см) от проксимального или дистального анастомоза. При формировании анастомоза обеспечьте максимум области с двойной линией, которая доступна для катетеризации, как показано на рис. 2.
• Для минимизации вероятности инфицирования, строго соблюдайте рекомендованные правила асептики.
• Не выполняйте катетеризацию, если есть признаки инфекции, кровотечения, опухоли, отека, гематомы или при отсутствии стойкого “возбуждения”.

После удаления иглы, аккуратно, не прижимая полностью, слегка придавите пальцами точку катетеризации для содействия быстрому гемостазу.
Слишком длительное прижимание или использование гемостатических зажимов может привести к образованию тромба, ограничивающего поток крови через имплантат.

Стерилизация
Сосудистые имплантаты Vascutek Ltd стерилизуются этиленоксидом, поставляются
стерильными и не подлежат повторной стерилизации. Промежуточная и внутренняя упаковка должна оставаться герметичной. Любое повреждение упаковки приводит к нарушению стерильности протеза. В случае повреждения оригинальной упаковки использование изделия не допускается, оно подлежит немедленному возврату поставщику.

Упаковка
В СТЕРИЛЬНУЮ ОБЛАСТЬ МОЖНО ПОМЕЩАТЬ ТОЛЬКО САМЫЙ ВНУТРЕННИЙ ПОДДОН.

Дополнительные этикетки
Вложенные в упаковку дополнительные этикетки предназначены для включения в медицинскую документацию пациента для удобства учета применения данного изделия.

Дополнительная информация
Не подвергать изделия из пПТФЭ (ePTFE) действию температур выше 260°C (500°F). При высоких температурах ПТФЭ (PTFE) разлагается с образованием токсичных продуктов распада.

Ссылки
1. Собственные данные.

Туфек® является зарегистрированным товарным знаком компании DuPont.
Lietuvių Kalba
Naudojimo instrukcijos

Aprašymas
Šios kategorijos Vascutek Ltd. kraujagyslių jungties protezai yra pagaminti iš ePTFE (išplesto politetrafluoroetileno); jie būna tiesūs arba lenkti.

Kraujagyslių jungties protezą sudaro dvi sujungti sluoksniai (žr. 1 pav.).

Šį kraujagyslių jungties protezą sudaro dvi atskiros dalys: viena dalis yra skirta anastomozei suformuoti ir prie natūralios kraujagyslės prisiūti, kita yra skirta kaniulei įvesti, kad būtų suformuota hemodializei reikalinga arterioveninė jungtis (žr. 2 pav.). Šios dalys ant protezo yra aiškiai pažymėtos.

Ant lenkto protezo taip pat yra kryžiukas, rodantis linkio viršūnę.

Indikacijos
Vascutek Ltd. kraujagyslių jungties protezas tarnauja kaip poodinė arterioveninė jungtis kraujo tekėjimui.

Kraujagyslių jungties protezą galima punktuoti 24 valandas po implantavimo, jei nėra jokių komplikacijų, t.y., jei nėra jokių infekcijos, kraujavimo, patinimo, edemos, hematomos požymų ir nėra stipraus “drebėjimo”.

Ant lenkto protezo taip pat yra kryžiukas, rodantis linkio viršūnę.

Kontraindikacijos
1. Štus protezus gali implantuoti tik kraujagyslių chirurgai, išmanantys darbo su šiais medicininiais prietaisais technologiją.
2. Štus protezų negalima implantuoti pacientams su padidintu jautrumu ePTFE.

Įspėjimai
1. Kai transplantato spindye naudojami embolektomijos arba balioniniai angioplastikos kateteriai, išpūsto baliono dydis turi būti kruopščiai suderintas su transplantato vidinės dalies skersmens ir nėra stipraus „drebėjimo“.

PASTABA: Prieš naudoti protezą, turi būti primenantis, jog anastomozė nepatiria tempimo. Prieš naudodama protezus, reikia patikrinti, kad jie būna tiesūs ir ne pažeisti.

2. Štus protezų negalima implantuoti pacientams su paciento kūno masės ir galimų galūnių padėtis

3. Dovanaude embolektomijos kateterį iš kiekvienos pjūvio pusės, uždarykite stabilituojančias siūlės.

4. Tai kaimas skersinis pjūvis, stabilizuojamosios siūlės nėra būtinos, pjūvį uždaryti padės horizontali matracinė siūlė.

5. NENAUDOKITE PRE-KLOTINGO, JIS NEBŪTINAS.

6. NENAUDOKITE, PASIBAIGUS NURODYTAM GALIOJIMO TERMINUI.

7. PAKARTOTINAI NESTERILIZUOTI.

8. Suspaudus galima pažeisti kraujagyslės protezą. Turi būti naudojami atraumatiniai spaustukai.
5. Laikykite švarioje, sausoje vietoje, ne žemesnėje nei 0°C (32°F) ir ne aukštesnėje nei 50°C (122°F) temperatūroje.

6. Bet kuri chirurginė procedūra, kurios metu naudojamas kraujagyslės protezas, yra susijusi su šiomis ir kitomis galimomis komplikacijomis: aneurizma; anastomozės sūlės ir (arba) kraujagyslės plynimas ar nutrūkimas; embolija; infekcija; kraujavimas; okluizija; stenozė; trombozė; užlinkimas/suspaudimas; protezuotos galūnės susidarymas; hematomos arba pseudoaneurizmų susidarymas; nuvogimo sindromas ir (arba) odos erozija.

7. Saugokite, kad transplantatas nesušlaptų. Transplantatui sušlapus aliejuje, alkoholyje, vandeniniuose tirpaluose ar kuriame nors iš šių skysčių, taikant spaudimą, paveikiamas šios medžiagos hidrofobinis atsparumas ir taip pat padidėja seromos susiformavimo tikimybė2.

8. Tiesūs protezai nėra pritaikyti naudoti lenktai konfigūracijai.

9. Lenkti protezai nėra pritaikyti naudoti tiesiai konfigūracijai.

Operavimo technika
Implantavimo technika ir patarimai

Bendri dalykai
- Kraujagyslių jungties protezui implantuoti nereikalinga jokia speciali technika.
- Protezus turi būti implantuojamas taip pat kaip tradicinis ePTFE protezas.
- Pasirinkite tokio dydžio tunelio formavimo įtaisą apvaliu galiuku, kad leistų glaudžiai įtaisyti protezą.
- Taikykite standartinę tunelio formavimo techniką ir instrumentus bei įtaisus, reikalingus protezui tvirtinti tarp arterijų ir venų.
- Tunelis visada formuokite tokiam gylyje, kuris leistų nesunkiai matyti ir čiuopti kraujagyslių jungties protezą.

Tiesi protezo konfigūracija (3 pav)
1. Padarykite du (2) pjūvius proksimalinei ir distalinei implantavimo vietai.
2. Atverkite arterinės ir veninės anastomozės srūtis.
3. Taikydami standartinę tunelio formavimo techniką, suformuokite poodinį tunelį tarp distalino ir proksimalinio pjūvių.
4. Įstatykite kraujagyslių jungties protezą į šį tunelį, užtikrindami, jog protezas nesisuktu.

TIESŪS PROTEZAI NĖRA PRITAIKYTI NAUDOTI LENKTAI KONFIGŪRACIJAI.

Tiesi protezo konfigūracija (4 pav)
1. Padarykite du (2) pjūvius proksimaliniam ir distaliniams galui implantuoti.
2. Atverkite arterinės ir veninės anastomozės srūtis.
3. Taikydami standartinę tunelio formavimo techniką, suformuokite poodinį tunelį tarp distalino ir proksimalinio pjūvių.
4. Įstatykite pirmąją kraujagyslių jungties protezo dalį į šį tunelį, užtikrindami, jog protezas nesisuktu.
5. Pakartokite 3-4 veiksmus su antrąja protezo dalimi.
6. Įstatykite protezę taip, kad centre esantis kraujagyslės jungties protezs dalis į šį tunelį, užtikrindami, jog protezas nesisuktu.

Anastomozės paruošimas
- Tinkamai įstačius protezą, jis yra paruoštas anastomozėi su kraujagysle.
- Protezo galas turi būti išlygintas, kad protezas gultų lygiai.
- Anastomozė gali būti formuojama taikant vienos arba dviejų siūlių metodą. Kita protezo dalis turi būti sutrumpinta ir anastomozė atliekama panašiu būdu.

Pastaba: Protezą galima pjauti ir (arba) siūti per visas jų ilgį, tačiau kaniulės įvedimo dalyje gali būti didesnis pasipriešinimas adatos įdūrimui.

Siuvimas
- Geriausiu rezultatų pasiekiama naudojant kūgišką, apvalią adatą su nesirezorbuojančiu monofilamentiniu 5,0 ar 6,0 siūlu, siuvant atitinkamai nuo protezo krašto.
- Kad išvengtumėte kraujavimo per siūlę, traukite siūlą 90° kampu į transplantatą.

Chirurginė revizija
- Jei būtina atitaisyti kraujagyslių jungties protezę naudojant tarpinį protezą, pasirinkite protezę, kurio vidaus skersmuo atitiktų esamo protezo vidaus skersmenį.
- Priklausomai nuo tam tikro paciento reikalavimų, šis protezas gali būti įvedomas į kaniulę, tačiau tai nėra suprantama kaip atitikties būklė.
- Jei kraujagyslių jungties protezę reikia atitaisyti naudojant tarpinį šuntavimo protezę, šios procedūros atlikti naudodamies išvengti išvengti tiesiai įvedimo vietų. Kaniulės įvedimo vietų rodo
dvi linijos, parodytos 2 pav. Nesilaikant šios procedūros reikalavimų, protezas gali tapti nesandarus.

Geriausiems rezultatams pasiekti Vascutek rekomenduoja reviziniam protezui taikyti galas į galą, o ne galas į šoną anastomozę.

Kaniulės įvedimas

Kraują ėmimo adatą 45° kampu kūgine dalimi durkite aukštyn tol, kol ji atsiras proteze. Duriant būtina imtis atsargumo priemonių, kad nepradurtumėte priešingos transplantato pusės.

Geriausiems rezultatams užtikrinti:

- Neįveskite kaniulės iki 2,5cm atstumu nuo proksimalinės ar distalinės anastomozės. Formuodami anastomozę, maksimaliai padidinkite kaniulės įvedimui skirtą dviejų linijų srity, kaip parodyta 2 pav.
- Infekcijai išvengti griežtai laikykitės nustatytų aseptikos reikalavimų.
- Neveskite kaniulės, jei yra infekcijos, kraujavimo, patinimo, edemos, hematomos požymiai arba jaučiasi stiprus drebėjimas.

Ištraukę adatą, pirštais švelniai, neužkimšdami paspauskite kaniulės įvedimo vietą, kad pagreitintumėte hemostazės procesą. Ilgiau paspaudus arba naudojant spaustukus, gali susidaryti krešulių, neleidžiančių per protezę tekėti kraujui.

Sterilizavimas

Vascutek Ltd. kraujagyslių jungties protezai yra sterilizuoti etileno oksidu; jie yra pateikiami sterilūs; pakartotinai jų sterilizuoti negalima. Tiek tarpinis tiek vidinis maišeliai turi būti nepažeisti. Bet koks maišelių pažeidimas saifogoja protezo nesterilumą. Kai sugadinta pirminė pakuotė, produkto naudoti negalima, jis turi būti nedelsiant grąžintas tiekėjui.

Pakuotė

STERILIAME LAUKE GALIMA NAUDOTI TIK VIDINĮ PADĖKLĄ.

Papildomas etiketės

Pakuotėje yra pateiktos papildomos etiketės, skirtos į paciento ligos istoriją įklijuoti, kad būtų galima turėti duomenų apie panaudotą įtaisą.

Papildoma informacija

Saugokite ePTFE gaminius nuo aukštēnes nei 260 °C (500 °F) temperatūros. Aukštoje temperatūroje PTFE skaidosi ir susidaro nuodingi skaidymosi produktai.

Nuorodos

1. Neskelbsti duomenys.

Tyvek® DuPont yra registruotas prekės ženklas
Açıklama
Vascutek Ltd. vasküler giriş greftlerinin bu serisi, düz ve önceden kıvrımlı olarak ePTFE'den (genişletilmiş politetrafloroetilen) üretilmiştir. Vasküler giriş grefti, Şekil 1'de gösterildiği üzere çift katmanla bağlı bir greftir. Vasküler giriş greftinin iki ayrı bölgesi vardır; bir bölge anastomoz formasyon için tasarlanmıştır ve doğal damara sütürlenir, diğer bölge Şekil 2'de gösterildiği üzere hemodiyaliz için vasküler giriş amacıyla kanülasyon için tasarlanmıştır. Bu bölgeler greft üzerinde açıkça işaretlenmiştir. Ayrıca, önceden kıvrımlı greffe kavisin apeksini belirtmek için çarpı işareti bulunmaktadır.

Endikasyonlar
Vascutek Ltd. vasküler giriş greftinin, kan erişimi için subkutan arteriyovenöz kanal olarak kullanılabileceğini belirtmiştir. İmplantasyondan sonra 24 saat içinde enfeksiyon, kanama, şişme, ödem, hematom veya güçlü bir “tril” eksikliği belirtisi gibi kontrendeksiyonlar yoksa, vasküler giriş için vasküler giriş grefti delinebilir.

NOT: Erken erişim, oklüzyon ve yeniden girişimle ilişkili olabilir.1

Kontrendikasyonlar
1. Bu greftler, sadece bu medikal ürünler için spesifik teknikler konusunda deneyimli Vasküler Cerrahlar tarafından implante edilmelidir.
2. Bu greftler, ePTFE’ye karşı duyarlılık gösteren hastalara implante edilmemelidir.

Uyarılar
1. Greft lümeni içerisinde embolektomi veya balon anjiyoplasti kateterleri kullanırken, şişirilmiş balon boyutu greftin iç çapı ile dikkatli bir biçimde eşleştirilmelidir. Kateterin boyutunun doğru olmaması veya balonun fazla şişirilmesi, greftin veya balonun yırtılmasına neden olabilir.
4. Greft, kanulasyon uygulanmayan alanlarda delinirse (Şekil 2), standart ePTFE gibi hareket edecektir.

5. TROMBEKTOMİ
Operasyon sonrası oklüzyon gerçekleşirse, vasküler giriş greftinin şu şekilde pıhtılaşmaması sağlanabilir:
- Boyut, seçim ve balonun şişirilmesi, balon boyutunun greftin iç çapı ile eşleştirilmesi ile ilgili kateter üreticisi talimatlarına uyun. Fazla şişirme veya aşırı çekmek, greftin genişlemesine veya zarar görmesine neden olabilir.
- Boylamsal bir insizyon kullanırken, embolektomi kateterinden önce insizyonun her bir ucuna sabit sütür yerleştirin.
- Transvers bir insizyon kullanılıyorsa, sabit sütür gerekli değildir ve yatay bir mattress sütür kapatmaya yardımcı olacaktır.

Önlemler
1. **ÖN PIHTILAŞTIRMA YAPMAYIN.** Ön pihtılaşma gerektirmez.
2. **BELİRTİLEN SON KULLANMA TARİHİNDEN SONRA KULLANMAYIN.** Tek kullanımlıkdir.
4. Klempleme, vasküler proteze zarar verebilir. En az uygulama gücü ile tercihen yumuşak
nal biçiminde aşa sahip atravmatik klempler kullanılamalıdır. 5. 0°C ila 50°C arasında serin, kuru bir alanda saklayın. 6. Vasküler protezin yer aldığı herhangi bir cerrahi prosedürde gerçekleşebilecek potansiyel komplikasyonlar aşağıda verilmiştir, ancak bunlarla sınırlı değildir: Anevrizma; anastomotik bozulma veya sütürginin ve/veya ana damarin yırtılması; embolik olaylar; enfeksiyon; kanama; oğlızyon; stenoz; tromboz; dolaşma/baskı; yerleştirilen uzuun şişmesi; hematom veya psödoanevrizma formasyonu; sapma sendromu ve/veya deri erozyonu. 7. Greftin ıslanmasından kaçının. Basınç yapılandıığında yağa, alkole, suyla ilgili solüsyona veya bu sıvılardan herhangi birine maruz kalması, materyalin hidrofob özelliklerini etkileyecek ve bu durum seroma formasyonunun2 artmasına neden olabilir. 8. Düz greftler, kavisli bir yapılandırmaya yerleştirilmek üzere tasarlanmamıştır. 9. Önceden kıvrılmış greftler, düz bir yapılandırmaya yerleştirilmek üzere tasarlanmamıştır. Operasyon Tekniği İmplantasyon Tekniği ve İpuçları Genel noktalar • Vasküler giris greftlerini implante etmek için özel bir teknik gerekmek. • Greft, geleneksel bir ePTFE grefti ile aynı şekilde implan edilmelidir. • Greftin rahat bir şekilde geçirileceği emin olmak için uyuşma problemi, materyalin hidrofob özellikleri etkileyecektir ve bu durum seroma formasyonunun2 artmasına neden olabilir. • Arteriyel ve venöz anastomotik alanları arasına grefti yerleştirmek için standart bir tunnel teknigi ve enstrümantasyonu kullanılır. • Tüneleri her zaman vasküler giris greftinin kadayi görülebileceği ve elle muayene edilebileceği uygun derinliklerde oluşturun. DÜZ GREFTLER, KAVISLİ BİR YAPILANDIRMAYA YERLEŞTİRİLMEK ÜZERE TASARLANMAMİŞTİR. Önceden kıvrılmış greft yapılandırması (Şekil 4) 1. İmplantasyon alanının proksimal ve distal girişileri için iki (2) insizyon oluşturun. 2. Arteriyel ve venöz anastomoz için alanları açık bırakın. 3. Standart tunnel oluşturma teknününiz kullanarak, distal ve proksimal insizyonlar arasında bir subkutan tunnel oluşturulur. 4. Bu tünele vasküler giris greftini yerleştirir; greftin bükülmü.Poduktinden emin olun. DÜZ GREFTLER, KAVISLİ BİR YAPILANDIRMAYA YERLEŞTİRİLMEK ÜZERE TASARLANMAMİŞTİR. Önceden kıvrılmış greft yapılandırması (Şekil 4) 1. İmplantasyon alanının proksimal ve distal girişileri için iki (2) insizyon oluşturulur. 2. Arteriyel ve venöz anastomoz için alanları açık bırakın. 3. Standart tunnel oluşturma teknününiz kullanarak, distal ve proksimal insizyonlar arasında bir subkutan tunnel oluşturulur. 4. Bu tünele vasküler giris greftini yerleştirir; greftin bükülmüPoduktinden emin olun. ÖNCEDEN KIVRILMIŞ GREFTLER, DÜZ BİR YAPILANDIRMAYA YERLEŞTİRİLMEK ÜZERE TASARLANMAMİŞTİR. ÖNCEDEN KIVRILMIŞ TASARIM, DOLAŞMAYI ENGELLEMEK İÇİN TERCİH EDİLİR. Anastomotik hazırlanık • Greft doğru bir şekilde yerleştirilirde, damara anastomoz için hazırlanır. • Greftin uc, greftin yumuşak bir şekilde konulanması için eğilmesi gerekir. • Bir veya iki sütürli teknik kullanılarak anastomoz gerçekleştirilebilir. Greftin diğer uc düzeltildemi ve aynı şekilde anastomoze edilebilir. Not: Greft tüm uzunluğu boyunca kesilebilecek ve/veya sürtünebilir, ancak kanulasyon bölümü iğnenin geçişine daha fazla direnç gösterebilir. Sütürleme • En iyi sonuca, greft kenarından uyuşun bir uzaklığı dikilmiş, emilemeyen tek filamentli 5,0 veya 6,0 sütür ile kesmeyen uçlu sivri bir iğne kullanarak ulaşılır. • Sütür çizgisinin kanamasını en aza indirmek için, diksi grefte doğru 90°lik açıyla çekin. Cerrahi revizyon • Cerrahi bir interpozisyon bypass grefti ile vasküler giris greftinin onarılması gerektiğiinde, lütfen mevcut greftin iç çapi ile eşleşen bir greft seçin.
Hastanın ihtiyaçlarına bağlı olarak greft uçtan yana veya uçtan uca doğru sütürlenebilir.

Cerrahi bir interpozisyon bypass grefti ile vasküler giriş greftinin onarılması gereki ise, bu prosedür için yalnızca kanülasyon bölümünü kullanın. Ayrıntılı bir biçimde Şekil 2'de verildiği üzere, çift basılmış çizgi kanülasyon bölümünün kolaylıkla anlaşılmasını sağlar. Bu prosedüre uyulmaması, greftin kendi kendini kapatma tasarım kriterlerini karşılayamaması ile sonuçlanabilir.

En iyi performansın sağlanması amacıyla Vascutek, revizyon grefti için uçtan yana yerine uçtan uca anastomozu tavsiye eder.

Kanülasyon

Greft içeri girene kadar, kana erişim işgnesini 45°'lik bir açı ile yukarı eğimli yerleştirin. Greftin ters yönünü delmeyin.

En iyi sonuçlar için:
- Kanülasyon alanlarını dönüşümlü olarak kullanın. Aynı alanda kanülasyonun tekrar edilmesi, greft duvarının zarar görmesine ve/veya hematom veya psödoanevrizma formasyonuna neden olabilir. İğne deliğin boyunca birbirine eşit uzaklıkta olmalıdır.
- Proksimal veya distal anastomozun 2,5 cm (bir inç) içerisine kanül sokmayın. Anastomoz verirken, Şekil 2'de gösterildiği üzere kanülasyon için uygun çift çizgi alan miktarını maksimuma çıkarın.
- Enfeksiyonu en aza indirmek için, aseptik tekniklere katı bir şekilde uygulayın. Enfeksiyon, kanama, şişme, ödem, hematom veya güçlü bir "tril" eksikliği belirtisi varsa, kanül yerleştirin.
- Düzenli ve hızlı hemostaza yardımcı olmak amacıyla kanülasyon alanını bastırmak için hafif bir biçimde okluziya neden olmayacak dijital basınç uygulayın. Uzun süre basınç uygulanması veya staz klemplerinin kullanılarak, greftten kan akışını engelleyerek pihti oluşumuna neden olabilir.

Sterilizasyon

Vascutek Ltd. vasküler giriş greftleri, etilen oksit ile sterilize edilmiş, steril bir şekilde sunulur ve tekrar sterilize edilmemelidir. Ara ve iç torbalarındaki mühürlerin sağlam olması gerekmektedir. Torbaların herhangi bir hasar, protezin sterilitesinin bozulmasına yol açar. Ana ambalajın zarar görmesi durumunda ürün kullanılmamalı ve derhal tedarkiye geri verilmelidir.

Ambalajlama

SADECE EN İÇTEKİ TEPSİ TEŞRİFL ALANA SOKULMALI.

İlave Etiketler

Bu ürünü izlenmesini sağlamak amacıyla hasta kayıtlarında kullanılacak amacıyla ilave etiketler ambalaja eklenmiş.

Ek Bilgi

ePTFE ürünleri 500 °F’den (260 °C) fazla sıcaklıklara maruz bırakmayın. PTFE, yüksek sıcaklıklarda toksik ayrışma ürünleri meydana getirir.

Referanslar

1. Veriler dosyadadır.

Tyvek®, DuPont’un tescilli ticari markasıdır.
дента за подкожен артериовенозен шънт за кръвен достъп.
Графтът за съдов достъп може да бъде пробиван за съдов достъп в рамките на 24 часа след имплантиране, ако няма налице противопоказания, т.е. ако няма симптоми на инфекция, кървене, подуване, оток, хематом, или ако няма сигна „треска”.
ЗАБЕЛЕЖКА: Ранен достъл може да доведе до оклузия и да наложи повторна интервенция1.

Противопоказания

1. Тези графтове трябва да се имплантират само от съдови хируризи с опит и запознати със специфичните техники, които се изискват за тези медицински изделия.
2. Тези графтове не бива да се имплантират на пациенти, проявяващи чувствителност към ePTFE.

Предупреждения

1. Когато се използват катетри за емболектомия или за ангиопластика с балон във вътрешността на графта, трябва да се внимава размерът на надувания балон да съответства на вътрешния диаметър на графта. Невъзможността за правилно оразмеряване на катетъра или пренадуването на балона може да доведе до разкъсване на графта или на балона.
2. Графтът за съдов достъл притежава известна степен на надължна еластичност. Да се избягва прекомерно натоварване на протезата, но е важно да има умерен натиск.
3. Отрежете графта с достатъчна дължина, за да сте сигурни, че няма се създаде напрежение върху анастомозата. Телесната маса и възможните нарушения в стойката на пациента трябва да се вземат предвид при определяне на дължината на графта, който предстои да се имплантира, в противен случай може да се създаде напрежение върху анастомозата. Пренебрегването на тези аспекти може да причини разкъсване на анастомозата, което да доведе до състояние кървене, загуба на функциите на крайник или възможна ампутация на крайник, а в най-лош случай и смърт.
4. Когато графтът се пробива в участъците, които не са предназначени за канюлиране, той ще реагира като стандартен ePTFE.

5. ТРОМБЕКТОМИЯ

В случай на постоперативна оклузия графтът за съдов достъл може да бъде изчищен от кръвни съсиреци по следния начин:
- Следвайте инструкциите на производителя на катетъра относно размера и вида на балона и надуването му, така че размерът на балона да съответства на вътрешния диаметър на графта. Пренадуване и прекомерно теглене може да разшири или повреди графта.
- Ако прилагате надлъжна инцизия, разположете фиксиращите шевове в края на инцизията, преди да поставите катетъра за емболектомия.
- Ако прилагате напречна инцизия, не са необходими фиксиращи шевове, а хоризонтален матрачен шев би улеснил затварянето.

Предпазни мерки

1. ДА НЕ СЕ ОБРАБОТВА ПРЕДВАРИТЕЛНО С КРЪВ. Не се налага предварително обработване с кръв.
2. ДА НЕ СЕ ИЗПОЛЗВА СЛЕД ИЗТИЧАНЕ НА ОБОЗНАЧЕНИЯ СРОК НА ГОДНОСТ.
3. ДА НЕ СЕ СТЕРИЛИЗИРА ПОВТОРНО.
САМО ЗА ЕДНОКРАТНА УПОТРЕБА. Не използвайте повторно, не обработвайте повторно и не стерилизирайте повторно. Повторната употреба, обработка или стерилизация може да компрометира структурата цялост на продукта и/или да доведе до неизправност на изделието, което може на свой ред да причини влошаване на здравето и смърт на пациентите. Повторната употреба, обработка или стерилизация може също така да създаде риск от заразяване на изделието и/или да предизвика инфекция на пациента и/или на крайния пациент. Заразяване на изделието може да причини телесна вреда, болест или смърт на крайния пациент.

4. Клампирането може да повреди всяка съдова протеза. Атравматични клампи, по възможност с меки ковани челюсти, следва да бъдат използвани с минимално прилагане на сила.

5. Да се съхранява в хладна и суха среда при температура не по-ниска от 0 °C (32 °F) и не по-висока от 50 °C (122 °F).

6. Възможните усложнения, които може да възникнат при всяка хирургическа процедура, включваща съдова протеза, включват, но не само: аневризма, анастомозна разкъсване или разпаряване на шевната линия и/или съда – гостоприемник; емболични събития; инфекция; кървене; оклузия; стеноза; тромбоза; прегъване/компресия; оток на имплантиран крайник; образуване на хематоми или псевдоаневризми; стийл синдром и/или кожна ерозия.

7. Пазете графта от овлажняване. Замърсяване с масло, алкохол, водни разтвори или която и да от тези течности ще повлияе на хидрофобните способности на материала и може да доведе до увеличено образуване на сером2.

8. Правите графтове не са предназначени за поставяне в извита конфигурация.

Техника на работа
Техника на имплантиране и съвети

Общи точки
• Не се изисква специална техника за имплантиране на графта за съдов достъп.
• Графтът следва да се имплантира по същия начин като конвенционален ePTFE графт.
• Изберете троакар с куршумоподобен връх и подходящ размер, за да сте сигурни, че графтът влизя плътно.
• Използвайте стандартна техника за тунелиране и набор инструменти, за да разположите графта между местата на артериалната и венозната анастомоза.
• Винаги създавайте тунели на подходящи дълбочини, които биха позволили лесна визуализация и палпация на графта за съдов достъп.

Конфигурация на прав графт (фигура 3)
1. Направете две (2) инцизии за проксимален и дистален вход на мястото на имплантиране.
2. Оголете местата за артериалната и венозната анастомоза.
3. Както използвате стандартната си техника за тунелиране, създайте подкожен тунел между дисталната и проксималната инцизия.
4. Поставете графта за съдов достъп в този тунел; като внимавате графтът да не се усуква.

ПРАВИТЕ ГРАФТОВЕ НЕ СА ПРЕДВИДЕНИ ЗА ПОСТАВЯНЕ В ИЗВИТА КОНФИГУРАЦИЯ.

Конфигурация на извит графт (фигура 4)
1. Направете две (2) инцизии за проксимален и дистален вход на мястото на имплантиране.
2. Оголете местата за артериалната и венозната анастомоза.
3. Както използвате стандартната си техника за тунелиране, създайте подкожен тунел между дисталната и проксималната инцизия.
4. Поставете първата страна на графта за съдов достъп в този тунел; като внимавате графтът да не се усуква.
5. Повторете стъпки 3 – 4 за втората страна на графта.

ИЗВИТИТЕ ГРАФТОВЕ НЕ СА ПРЕДВИДЕНИ ЗА ПОСТАВЯНЕ В ПРАВА КОНФИГУРАЦИЯ. ИЗВИТАТА ВЕРСИЯ СЕ ПРЕДПОЧИТА, ЗА ДА СЕ ИЗБЕГНЕ ПРЕГЪВАНЕ.
Подготвяне за анастомоза
• След като графтът е правилно поставен, той е готов за анастомоза към съда.
• Краят на графта трябва да се скоси, за да се осигури гладко лягане на графта.
• Анастомозата може да бъде извършена, като се използва техника на единичен или двоен шев. Другият край на графта следва да бъде подрязан и анастомизиран по сходен начин.

Забележка: Графтът може да бъде рязан и/или зашиван по цялата си дължина, но все пак участъкът за канюлиране може да окаже по-голямо съпротивление при преминаването на иглата.

Зашиване
• Най-добри резултати се постигат при използването на нережеща игла с остър връх и нерезорбируем монофиламент хирургически конец 5.0 или 6.0, зашит на подходящо разстояние от ръба на графта.
• За да се намали до минимум кървенето по линия на конеца, издърпвайте конеца под ъгъл от 90° към графта.

Хирургическа корекция
Ако се налага корекция на графта за съдов достъп с хирургическо вмъкване на графт за байпас, изберете графт с вътрешен диаметър, който да съответства на намиращия се в момента на това място.
• Графтът може да бъде пришит или с края към страната, или край към край в зависимост от нуждата при конкретния пациент.
• Ако се налага корекция на графта за съдов достъп с хирургическо вмъкване на графт за байпас, използвайте само участъка за канюлиране за тази процедура. Участъкът за канюлиране се разпознава лесно по двойно отпечатаната линия, която е показана на фигура 2. Неуспешното съпротивление при преминаването на иглата може да доведе до този процес, за да притиснете мястото на канюлирането, с цел да подпомognете кръвоспирането.

Излишно дълга компресия или използването на фиксиращи клампи може да доведе до съсиречна формация, която да ограничи кървация поток през графта.

Стерилизация
Графтовете за съдов достъп Vascutek Ltd са стерилизирани в етиленов оксид, доставени са стерилни и не трябва да бъдат стерилизирани повторно. Щампите, както на средния, така и на вътрешния плик, трябва да са непокътнати. При каквато и да е повреда на пликовете протези да се счита за нестерилни. В случай на повреда на основната опаковка продуктът да не се използва и да се върне незабавно на доставчика.

Опаковка
САМО НАЙ-ВЪТРЕШНИЯТ КОНТЕЙНЕР МОЖЕ ДА БЪДЕ ИЗЛАГАН В СТЕРИЛНАТА СРЕДА.

Допълнителни етикети:
Допълнителни етикети са приложени върху опаковката, с цел да се използват в
картона на пациента, за да стане възможно проследяването на това изделие.

Допълнителна информация
Не излагайте продуктите еPTFE на температури по-високи от 500°F (260 °C). PTFE се разпада на високи температури, създавайки токсични отпадни продукти.

Справки
1. Данни на съхранение.

Tyvek® е регистрирана търговска марка на DuPont.
Opis
Ovaj dijapazon graftova za vaskularni pristup kompanije Vascutek Ltd. proizvodi se od ePTFE-a (ekspandiranog politetrafluoroetilena) u ravnoj i zakrivljenoj verziji.

Graft za vaskularni pristup je graft sa povezana dva sloja, kao što je prikazano na slici 1.

Graft za vaskularni pristup ima dve odvojene zone: jedna je predviđena za formiranje anastomoze i zašivanje na matični krvni sud, a druga za kanilizaciju radi vaskularnog pristupa u cilju hemodijalize, kao što je prikazano na slici 2. Zone su jasno označene na graftu. Zakrivljeni graft takođe ima krstić koji označava vrh krivine.

Indikacije
Graft za vaskularni pristup kompanije Vascutek Ltd. indikovan je za upotrebu kao subkutani arteriovenski kanal za pristup krvi.

Graft za vaskularni pristup može da se probije radi vaskularnog pristupa u roku od 24 časa posle implantacije ukoliko nisu prisutne kontraindikacije, tj. ako nema znakova infekcije, krvarenja, otoka, edema, hematoma ili snažnog „podrhtavanja“.

Kontraindikacije
1. Ove graftove smeju da implantiraju samo vaskularni hirurzi koji imaju iskustva sa određenim tehnikama potrebnim za ove medicinske proizvode.
2. Ovi graftovi se ne smeju implantirati kod pacijenata osetljivih na ePTFE.

Upozorenja
2. Odsecite dovoljno dugačak graft tako da osigurate odsustvo naprezanja anastomoze.

Prilikom određivanja dužine grafta koji će biti implantiran, moraju se uzeti u obzir telesna masa pacijenta i očekivani krajni položaji tela; u protivnom je moguća napregnutost anastomoze. Neuzimanje u obzir ovih aspekata može da dovede do disrupcije anastomoze, koja za posledicu može da ima obilno krvarenje, gubitak funkcije ili moguću amputaciju uda, a u najgorem slučaju i smrt.

4. Kada se graft probije na delovima, koji nisu predviđeni za kanilizaciju (slika 2), ponašaće se na isti način kao standardni ePTFE graft.

5. TROMBEKTOMIJA
Ako dođe do postoperativne okluzije, ugrušak iz grafta za vaskularni pristup može se ukloniti na sledeći način:
- Pridržavajte se uputstava proizvođača katetera u pogledu veličine, izbora i naduvavanja balona i prilagodite veličinu balona unutrašnjem prečniku grafa. Prekomerno naduvavanje ili prekomerno povlačenje mogu da dilatiraju ili oštete graft.
- Kada koristite uzdužni rez, postavite držeće šavove na svakom kraju reza pre nego što uvedete kateter za embolektomiju.
- Ako koristite poprečni rez, nisu potrebni držeći šavovi i za zatvaranje se koristi standardni horizontalni šav.

Mere predostrožnosti
1. NE PODVRGAVATI „PRECLOTTING“-u. „Preclotting“ nije potreban.
2. NE KORISTITI POSLE ISTEKA ROKA UPOTREBE.

Kontaminacija proizvoda može da dovede do povrede, bolesti ili smrti pacijenta - krajnjeg korisnika.
4. Pričvršćivanje sponom može da ošteti vaskularnu protezu. Treba koristiti atraumatske
spone, u idealnom slučaju one sa mekim, obloženim čeljustima, uz minimalnu primenu sile.

5. Ćuvati na hladnom i suvom mestu, na temperaturi od 0 °C do 50 °C.

6. Potencijalne komplikacije koje mogu da se pojave pri upotrebi vaskularnih proteza uključuju, između ostalog: aneurizmu; disrupciju anastomoze ili cepanje linije šava i/ili matičnog krvnog suda; embolijske događaje; infekciju; krvarenje; oklziju; stenozu; trombozu; uvrtanje/kompresiju; oštećenje kože.

7. Izbegavati kvašenje grafta. Izlaganje ulju, alkoholu, vodenim rastvorima ili bilo kojoj od ovih tečnosti dok je pod pritiskom utiče na hidrofobična svojstva materijala i može da dovede do povećanog seroma.

8. Ravni graftovi nisu predviđeni za postavljanje u zakrivljenim konfiguracijama.

Konfiguracija ravnog grahta (slika 3)

1. Napravite dva (2) reza za proksimalni i distalni ulaz na mestu implantacije.

2. Otvorite mesta za arterijsku i vensku anastomozu.

3. Standardnom tehnikom pravljenja tunela napravite supkutani tunel između distalnog i proksimalnog reza.

4. Stavite graht za vaskularni pristup u ovaj tunel vodeći računa da osigurate da se graht ne uvrće.

Konfiguracija zakrivljenog grahta (slika 4)

1. Napravite dva (2) reza za proksimalni i distalni ulaz na mestu implantacije.

2. Otvorite mesta za arterijsku i vensku anastomozu.

3. Standardnom tehnikom pravljenja tunela napravite supkutani tunel između distalnog i proksimalnog reza.

4. Stavite graht za vaskularni pristup u ovaj tunel vodeći računa da osigurate da se graht ne uvrće.

Priprema anastomoze

- Kada je graht pravilno postavljen, spreman je za anastomozu na krvni sud.

- Kraj grahta treba formirati sa kosinom da bi graht glatko nalegao.

- Anastomoza se može obaviti pomoću tehnik ne jednog ili dva šava. Drugi kraj grahta treba formirati i anastomozirati na sličan način.

Zašivanje

- Najbolji rezultati će se postići uz upotrebu konusne igle koja ne seče, uz šivenje nerosorptivnim monofilamentom veličine 5.0 ili 6.0 na odgovarajućem rastojanju od 3-4 cm.

- Da biste krvarenje na liniji šava sveli na minimum, povlačite šav pod uglom od 90 ° u odnosu na graht.

Hirurška revizija

- Ako je potrebna popravka grahta za vaskularni pristup hirurškim interpozicionim bajpas graftom, izaberite graht unutrašnjeg prečnika koji odgovara prečniku već postavljenog grahta.

- Ako je potrebna popravka grahta za vaskularni pristup hirurškim interpozicionim bajpas graftom, za taj postupak koristite samo deo za kanilizaciju. Deo za kanilizaciju se lako identifikuje dvostrukom odštampanom linijom, kao što je prikazano na
slici 2. Nepoštovanje ove procedure može da
doveđe do toga da graft ne ispuni planirane
kriterijume samozaptivanja.
Za obezbeđivanje najboljih performansi,
kompanija Vascutek za revizion grafa
preporučuje anastomozu od kraja do kraja, a ne
od kraja do strane.

Kanilizacija
Umjetite iglu za pristup krvi pod uglom od 45
stepeni tako da prodre u graft.
Neophodno je voditi računa da ne dođe do
probijanja suprotnе strane grafa.

Za najbolje rezultate:
• Menjajte mesta kanilizacije. Ponavljanje
kanilizacije na istom mestu može da dovede
do oštećenja zida grafta i/ili do formiranja
hematoma ili pseudoaneurizme. Trebalo bi
da mesta proboda igle budu raspoređena u
podjednakim razmacima po supbutanoj dužini
grafta.
• Ne kanilirati unutar 2,5 cm proksimalne ili
distalne anastomoze. Prilikom oblikovanja
anastomoze, broj područja sa dvostrukom
linijom dostupna za kanilizaciju (prikazana na
slici 2) treba da bude maksimalno moguć.
• Radi svodenja infekcije na minimum, potrebno
je strogo se pridržavati aseptičnih tehnika.
• Ne kanilirati ako ima znakova infekcije,
krvarenja, oticanja, edema, hematoma ili
snažnог „podrhtavanja“.
Pošto izvučete iglu, primenite blag, neokluzivni
pritisak na mesto kanilizacije da biste potpomogli
brzu hemostazu.

Sterilizacija
Graftovi za vaskularni pristup kompanije
Vascutek Ltd. sterilisani su etilen-oksidom,
isporučuju se sterilni i ne smeju se ponovo
sterilisati. Srednja i unutrašnja vreća moraju da
budu hermetički zatvorene. Svako oštećenje
vreća protezu čini nesterilnom. U slučaju
oštećenja primarnog pakovanja, proizvod
se ne sme koristiti i treba ga odmah vratiti
proizvođaču.

Pakovanje

U STERILNO POLJE SE SME UNOSITI SAMO
KRAJNE UNUTRAŠNJE PAKOVANJE.

Dodatne nalepnice
U pakovanju su priložene dodatne nalepnice za
stavljanje u zdravstveni karton pacijenta kako bi
se omogućilo praćenje ovog proizvoda.

Dodatne informacije
Ne izlagati ePTFE proizvode temperaturama
višim od 260 °C. PTFE se razlaže na visokim
temperaturama, pri čemu nastaju toksični
proizvodi razlaganja.

Literatura
seromas complicating arterial grafts. Surgery.
97; 2: pp. 194 – 204.
1. Podaci iz arhive.
Tyvek® je registrovani zaštitni znak kompanije
DuPont.
Appendices

<table>
<thead>
<tr>
<th>English</th>
<th>Japanese</th>
<th>German</th>
<th>French</th>
<th>Czech</th>
<th>Hungarian</th>
<th>Polish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-4</td>
<td>図 1-4</td>
<td>Abbildung 1-4</td>
<td>Obrázek 1-4</td>
<td>1-4 ábra</td>
<td>Afbeelding 1-4</td>
<td>Obrázok 1-4</td>
</tr>
<tr>
<td>Figura 1-4</td>
<td>Rysunek 1-4</td>
<td>Figura 1-4</td>
<td>Figura 1-4</td>
<td>1-4 pav</td>
<td>Figur 1-4</td>
<td>Figura 1-4</td>
</tr>
<tr>
<td>Figur 1-4</td>
<td>Şekil 1-4</td>
<td>Figur 1-4</td>
<td>Figur 1-4</td>
<td>Slika 1-4</td>
<td>Еківа 1-4</td>
<td>Фігура 1-4</td>
</tr>
<tr>
<td>Eikóva 1-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>Description</td>
<td>Translation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| English | Figure 1: Vascular Access Graft Construction | Self-sealing membrane*
*The self-sealing central layer gives the graft its self-sealing properties, following needle puncture for dialysis. | ePTFE Graft |
| Français | Figure 1: Structure de la prothèse pour abord vasculaire | Membrane élastomère auto-étanche*
*Cette couche médiane auto-étanche permet une hémostase rapide après le retrait de l'aiguille | Prothèse en ePTFE |
| Deutsch | Abbildung 1: Aufbau einer Gefäßprothese | Selbst verschließende Memran*
*Die selbst verschließende Mittelschicht gibt der Prothese nach einer Punktion für die Dialyse ihre selbst abdichtenden Eigenschaften. | Prothese aus ePTFE |
| Nederlands | Afbeelding 1: Constructie vaattoegangs prothese | Zelfdichtend membraan*
*De zelfdichtende middenlaag zorgt ervoor dat de prothese vanzelf wordt gedicht nadat de prothese werd aangeprikt voor dialyse. | ePTFE-graft |
| Italiano | Figura 1: Struttura della protesi per accesso vascolare | Membrana autosiqillante*
*Lo strato centrale autosigillante assicura una rapida emostasi alla rimozione dell’ago per emodialisi | Protesi in ePTFE |
| Español | Figura 1: Estructura del injerto de acceso vascular | Membrana de autosellado*
*La capa central autosellante le da al injerto sus propiedades de autosellado después de la punção com agulha para diálise. | Prótesis de ePTFE |
| Português | Figura 1: Constução da prótese para acesso vascular | Membrana auto-vedante*
*A camada mediana auto-vedante confere à prótese as suas propriedades de auto-vedação após punção com agulha para diálise. | Prótese de ePTFE |
| Svensk | Figur 1: Konstruktion av vaskulärt Accesstransplantat | Självförslutande membran*
*Det självförslutande mittenlagret ger transplantatet dess självförslutande egenskaper efter nålpunktering för dialys. | ePTFE-implantet |
| Dansk | Figur 1: Vaskular adgangsgraft-konstruktion | Selvforseglende membran*
*Det selvforseglende midterlag gør graften i stand til at forsegle sig selv efter nålepunktur i forbindelse med dialyse. | ePTFE graft |
<table>
<thead>
<tr>
<th>Language</th>
<th>Translation 1</th>
<th>Translation 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norsk</td>
<td>Figur 1: Konstruksjon av kartilgang</td>
<td>Selvtettende membran* *Det selvtettende midtre laget gir graftet dens selvtettende egenskaper, etter nålpunksjon ved dialyse.</td>
</tr>
<tr>
<td>ΕΛΛΗΝΙΚΑ</td>
<td>Εικόνα 1: Δομή μοσχεύματος ανεγειακής προσπέλασης</td>
<td>Μεμβράνη αυτοστεγα-νοποίησης* *Η κεντρική στιβάδα αυτοστεγανοποίησης προσδίδει στο μόσχευμα αυτοστεγανοποιητικές ιδιότητες, μετά τη διάτρηση με βελόνα για την αιμοκάθαρση.</td>
</tr>
<tr>
<td>日本語</td>
<td>図1:アクセス人工血管の構造</td>
<td>セルフシール膜* *セルフシール中間層により、人工血管への透析針穿刺後におけるセルフシール性を発揮します。</td>
</tr>
<tr>
<td>Česky</td>
<td>Obrázek 1: Stavba cévního štěpu</td>
<td>Samotěsnící membrána* *Samotěsnící střední vrstva zabezpečuje uzavření štěpu po propíchnutí jehlou při dialýze.</td>
</tr>
<tr>
<td>Magyar</td>
<td>1 ábra: Ír shunt graft felépítése</td>
<td>Önzáró membrán* *Az önzáró középső réteg biztosítja a graft önzáró tulajdonságát, a dialízishez szükséges tűszúrás után.</td>
</tr>
<tr>
<td>Polski</td>
<td>Rysunek 1: Budowa protezy dla dostępu naczyniowego</td>
<td>Samouszczelniająca się membrana* *Samouszczelniająca się warstwa środowiskowa nadaje całej protezie właściwości samouszczelniające się po przekłuciu jej igłą w celu przeprowadzenia dializy.</td>
</tr>
<tr>
<td>Slovensky</td>
<td>Obrázok 1: Stavba protézy pre prístup do cievy</td>
<td>Samotesniaca membrána* *Samotesniaca stredná vrstva zabezpečuje tesnost' protézy po prepichnuti ihlou pri dialýze.</td>
</tr>
<tr>
<td>Русский</td>
<td>Рис.1: Доступ к сосуду</td>
<td>Самогерметизирующаяся мембрана *Центральный самогерметизирующийся слой проявляет свои герметизирующие свойства при проколе иглой протеза сосуда для диализа</td>
</tr>
<tr>
<td>Lietuvių Kalba</td>
<td>1 pav: Kraujagyslių jungties protezo sandara</td>
<td>Užsiklijuojanti membrana* *Užsiklijuojantis vidurinis sluoknis užtikrina protezo sandarumą, prieš pradedant dializę jūrūs ada.</td>
</tr>
<tr>
<td>Türkçe</td>
<td>Şekil 1: Vasküler Erişim Gref Yapılanması</td>
<td>Kendinden kaplamalı membran * *Diyaliz için iğne batırıldıktan sonra, kendinden kaplamalı orta tabaka, grefte kendinden kaplama özelliklerini verir.</td>
</tr>
<tr>
<td>Български</td>
<td>Фигура 1: Конструкция на графт за съдов достъп</td>
<td>Самозапечатваща мембрана* *Самозапечатващият централен слой дава на графта неговите самозапечатващи качества, след пробиване с игла за диализа.</td>
</tr>
<tr>
<td>Srpski</td>
<td>Slika 1: Konstrukcija grafa za vaskularni pristup</td>
<td>Samozaptivajuća membrana* *Samozaptivajući središnji sloj daje grafu svojstva samozaptivanja posle probijanja iglom radi dijalize.</td>
</tr>
<tr>
<td>Language</td>
<td>Figure 2: Suturing and Cannulation zones</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>Suture zone (Single line)</td>
<td>Cannulation zone (Double line)</td>
</tr>
<tr>
<td>Français</td>
<td>Zone de suture (Ligne simple)</td>
<td>Zone de ponction (Ligne double)</td>
</tr>
<tr>
<td>Deutsch</td>
<td>Nahtbereich (Einzellinie)</td>
<td>Kanülen-einführbereich (Doppelte Linie)</td>
</tr>
<tr>
<td>Nederlands</td>
<td>Hechzone (Enkele lijn)</td>
<td>Canulatiezone (Dubbele lijn)</td>
</tr>
<tr>
<td>Italiano</td>
<td>Zona di sutura (Linea singola)</td>
<td>Zone di canulazione (Linea doppia)</td>
</tr>
<tr>
<td>Español</td>
<td>Zona de sutura (Linea única)</td>
<td>Zona de canulación (Linea doble)</td>
</tr>
<tr>
<td>Português</td>
<td>Zona de sutura (Linha única)</td>
<td>Zona de canulação (Linha dupla)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1. 2. 3. 4. 5. 6.</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td>Language</td>
<td>Label</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>Figure 3</td>
<td></td>
</tr>
<tr>
<td>Japanese</td>
<td>図 3</td>
<td></td>
</tr>
<tr>
<td>Czech</td>
<td>Obrázek 3</td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>Abbildung 3</td>
<td></td>
</tr>
<tr>
<td>Hungarian</td>
<td>3 ábra</td>
<td></td>
</tr>
<tr>
<td>Dutch</td>
<td>Afbeelding 3</td>
<td></td>
</tr>
<tr>
<td>Slovak</td>
<td>Obrázok 3</td>
<td></td>
</tr>
<tr>
<td>Spanish</td>
<td>Figura 3</td>
<td></td>
</tr>
<tr>
<td>Russian</td>
<td>Rysunek 3</td>
<td></td>
</tr>
<tr>
<td>Romanian</td>
<td>Figura 3</td>
<td></td>
</tr>
<tr>
<td>Bulgarian</td>
<td>Рис.3</td>
<td></td>
</tr>
<tr>
<td>Polish</td>
<td>Figura 3</td>
<td></td>
</tr>
<tr>
<td>Serbian</td>
<td>3 pav</td>
<td></td>
</tr>
<tr>
<td>Turkish</td>
<td>Şekil 3</td>
<td></td>
</tr>
<tr>
<td>Russian</td>
<td>Фигура 3</td>
<td></td>
</tr>
<tr>
<td>Croatian</td>
<td>Slika 3</td>
<td></td>
</tr>
<tr>
<td>Greek</td>
<td>Εικόνα 3</td>
<td></td>
</tr>
<tr>
<td>Figure 4</td>
<td>図 4</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>Figure 4</td>
<td>Obrázek 4</td>
<td></td>
</tr>
<tr>
<td>Abbildung 4</td>
<td>4 ábra</td>
<td></td>
</tr>
<tr>
<td>Afbeelding 4</td>
<td>Obrázok 4</td>
<td></td>
</tr>
<tr>
<td>Figura 4</td>
<td>Rysunek 4</td>
<td></td>
</tr>
<tr>
<td>Figura 4</td>
<td>Рис.4</td>
<td></td>
</tr>
<tr>
<td>Figur 4</td>
<td>4 pav</td>
<td></td>
</tr>
<tr>
<td>Figur 4</td>
<td>Şekil 4</td>
<td></td>
</tr>
<tr>
<td>Figur 4</td>
<td>Фигура 4</td>
<td></td>
</tr>
<tr>
<td>Figur 4</td>
<td>Slika 4</td>
<td></td>
</tr>
<tr>
<td>Eikóνα 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>